Drogen Schlafmittel

Schlafmittel

Handelspräparate:

Pflanzlich: Ardeysedon Avedorm

Avedorm N + 41 % Alkohol

Baldrian-Dispert Baldrian Dispert Nacht

Baldrianox S Baldriparan N Baldriparan stark N Baldrian-Phyton Benedorm Baldrian

Biosedon S Biral forte Boxocalm Cefasedativ

Doppelherz Melissengeist + 71 % Alkohol

Dormarist Dormeasan Dormo-Sern

Dormoverlan Einschlaf-Kapseln

Euvegal forte/N Habstal-Nerv N Hewedormin

Hingfong-Essenz Hofmann's + 70 % Alkohol

Hovaletten N Hyposedon N + Alkohol Ivel Schlaf-Dragees

JuDorm

Kavain Harras Plus Kavosporal comp. Klosterfrau Melissengeist + 63 % Alkohol

Kneipp Baldrian

Kneipp Melissen-Pflanzensaft Kneipp Nerven und Schlaf A

Kytta-Sedativum f Luvased

Luvased Tropfen N

Melival-Tropfen Hofmann's

Moradorm S Nervendragees Nerventrost Nervinetten

Barbiturate: Lepinal Lepinaletten

Chloralhydrat: Chloraldurat Nervipan

Nervoregin forte PascosedonAS Passiflora Curarina

Passiorin N + 11 % Alkohol

Phytogran Phytonoctu

Phytonoxon N + 96 % Alkohol

Plantival novo Pronervon Phyto Psychotonin Recvaysat Bürger

Regiesan + 40% Alkohol

Regivital Baldrian RubieDorm RubieSed Salus Gutnacht

Salus Gutnacht-Kräutertonikum

Sedalint Baldrian Seda Kneipp N Sedalect N Seda-Plantina Sedariston Sedasyx Sedatruw S SEDinfant N Sedonium Selon

Sedacur forte

Sensinery forte

Sirmiosta SX Valeriana comp. Somnuvis S

Valdispert comp Valdispert Valena N Valeriana mild Valmane Visinal Vivinox N

Luminal

Luminaletten

III—3.3 Schlafmittel Drogen

Benzodiazepine:

DalmadormNeodorm SPDormalonNitrazepam AL

Dormicum Nitrazepam-neuraxpharm

Dormo-Puren Noctamid Eatan N Norkotral Ergocalm Novanox/-forte Flunimerck Planum/-mite Fluninoc 1 Pro Dorm Pronervon Flunitrazepam-neuraxpharm 1 Flunitrazepam-ratiopharm 1 Radedorm 5 Flurazepam Riker Remestan/-mite Halcion Rohypnol Imeson Sonin

Lendormin Staurodorm Neu Loretam Temazep von et

Mogadan

An tihistaminika:

Dolestan/forte comp. Nervo OPT N Dormigoa N Nvtol Dormutil N Palmicol Doxylamin von et S. 8 Gittalun Sedaplus Halbmond Sediat Hevert-Dorm Sedopretten Hewedormir forte Sedovegan Novo

Lupovalin Valeriana comp. Hevert SL Moradorm Valeriana forte Hevert

Munleit

Hoggar N

Stofrwechselverhalten:

Schlafmittel durchlaufen im Organismus eine umfangreiche Biotransformation, bei der vielfach auch pharmakologisch wirksame Produkte entstehen können, z.B.: Glutethimid und 4-Hydroxyglutethimid, Carbromal und Carbromid und Äthylbuturylharnstoff.

Betadorm A

Diagnostik von Intoxikationen:

Kom asta dienein teilungen:

1. Die Einteilung nach Reed:

Gruppe 0: Schlafender Patient, kann geweckt werden und Fragen beantworten, sitzt im Bett, trinkt, etc.

Gruppe 1: Komatöser Patient, Reaktion auf Schmerzreize wie Venenpunktur, Schlag, Druck etc. Keine Kreislaufstörung, alle Reflexe intakt.

Gruppe 2: Patient ohne Reaktion auf Schmerzreize, aber ohne Störung von Atmung und Kreislauf. Die meisten der Reflexe sind intakt.

Gruppe 3: Patient mit Fehlen aller oder fast aller Reflexe, aber ohne Störung von Atmung und Kreislauf.

Gruppe 4: Patient mit Fehlen aller oder fast aller Reflexe, mit Atemdepression, mit Zyanose und mit Kreislaufversagen, Schock oder beidem.

2. Matthew teilt seine komatösen Patienten nach folgendem Schema ein:

Gruppe 1: Schläfriger Patient, antwortet auf verbale Aufforderung.

Gruppe 2: Patient antwortet sofort auf leichten Schmerzreiz.

Gruppe 3: Patient gibt nur minimale Antwort auf maximalen Schmerzreiz.

Gruppe 4: Patient gibt keine Antwort auf maximalen Schmerzreiz.

- 3. Grade der Bewußtlosigkeit nach Gulbrandsen:
- Grad 1: Das Bewußtsein des Patienten ist regelmäßig herabgesetzt, er kann jedoch einfache Fragen durch Blinzeln der Augenbrauen oder Kopfnicken richtig beantworten.
- Grad 2: Stuporöser Patient, kann durch alle Reize geweckt werden, reagiert auf eine sich bewegende Hand oder andere bewegte Gegenstände, oder er führt einfache Befehle aus wie »Halte meine Hand«, »Augen öffnen«.
- Grad 3: Bewußtloser Patient, der auf Schmerz, laute akustische und taktile und/oder stimmliche Reize reagiert.
- Grad 4: Tief bewußtloser Patient, antwortet auf Schmerzreize und auf laute akustische Reize.
- Grad 5: Tief bewußtloser Patient, antwortet nur auf Schmerzreize.
- Grad 6: Sehr tief bewußtloser Patient, gibt keine Antwort auf Schmerzreize.
- 4. Einteilung nach Chazan und Garella:

Leichte Vergiftung: Reaktion auf Schmerzreize

Mittlere Vergiftung: Keine Reaktion auf Schmerzreize

Schwere Vergiftung: Keine Reaktion auf Schmerzreize, Schock, Atemdepression.

- 5. Münchner Coma-Skala (v. Cramon, Brinkmann, Schulz):
- 0 = nicht reaktiv
- 1 = motorisch reaktiv
- 2 = motorisch und mimisch reaktiv
- 3 motorisch, mimisch und orientierend reaktiv
- 4 = uneingeschränkt reaktiv

Für die Beschreibung der vier Reaktionsarten ergibt sich:

Motorisch: Jede Bewegung des Rumpfes, der Extremitäten oder des Kopfes ohne klar abgrenzbaren,

direkten Bestandteil in Bezug auf den Reiz oder den Untersucher

Mimisch: Stirnrunzeln, jede Bewegung der Perioralmuskulatur, der Zunge, der Schlundmuskulatur,

einzelne oder wiederholte Kontraktionen der Augenlider bei geöffneten oder geschlossenen

Augen

Orientierung: Zu- oder Abwendung des Kopfes vom Reiz in einer bestimmten Richtung und Dauer;

Öffnen der Augen oder das Geöffnetbleiben der Augen

Mitteilungs- Gemäß Richtung und Dauer abgrenzbare Blickzuwendung zum Reiz oder Untersucher;

fähigkeit: verbale, sprachliche Äußerung in der Muttersprache des Patienten.

6. Einteilung nach Adams (siehe auch Tab. 1)

Zur ersten diagnostischen Orientierung schlägt Adams folgende vereinfachte Einteilung in vier Stufen vor:

- I. Bewußtseinstrübung: Schläfriger Patient, leicht weckbar, zeigt Haltungstonus und reagiert verbal.
 - a) heterogene Form: produktiv agitiert, affektiv wechselhaft, meist desorientiert, anamnestischkonfabulatorisch oder illusionär-wahnhaft oder rauschartig-fragmentierte Zerfahrenheit. Breites EEG-Spektrum.
 - b) homogene Form: adynamisch, mutistisch, eng determiniert und scheinbar besonnen, erlebnisarm, affektiv indifferent, oft großzügig orientiert. Enges EEG-Spektrum.
- II. Bewußtlosigkeit. Erhöhte Weckschwelle, kein Haltungstonus, averbale ungezielte Reaktionen.
- III. Koma. Nicht weckbar, verminderter Ruhetonus der Muskeln. Verminderte Reflexe.
- IV. Vita reducta. Reflexe erloschen. Muskulatur atonisch. Intermittierend apnoisch. Keine EEG-arousal.
- 7. Einteilung nach O. Bartels:

Stadium I ansprechbar, erweckbar, geringe Symptomatik, keine zentralen Ausfälle

Stadium II bewußtlos, Reaktion auf Schmerzreiz, Reflexe vorhanden, Atmung und Kreislauf intakt

Stadium III komatös, keine Reaktion auf Schmerzreiz, Reflexe nicht auslösbar, Atmung und Kreislauf gestört

Es wird noch erwähnt, daß dieses Schema nur bei Schlafmittelintoxikationen anwendbar ist und - was auch in der Einteilung v. *Clarmanns* deutlich betont wird - nicht für Schlafmittel mit Methaqualon oder Glutethimid gültig ist. Atropin- und Parathion-(E 605-)Vergiftungen lassen sich in dieses Schema ebenfalls nicht einordnen.

Tab. 1: Einteilung nach Adams

Vigilanzstadien (mit synonymen Bezeichnungen)	I. Somnolenz Hypersomnie Bewußtseinstrüb. Semicoma Coma Vigile	II. Bewußtlosigkeit Unconsciousness Coma leger	III. Tiefe Bewußtlosigkeit »Koma« Coma profond	IV. »Koma« Coma grave Coma avec effonrem. vegetatif Vita reducta
vergleichbare EEG-Stadien	(B) Einschlafen	(C) Leichter Schlaf	(C-D) Mittlerer Schlaf	(D-E) Tiefer Schlaf
Augen	Lidschluß inkonst.	konstant	Kornealreflex vermind.	Kornealreflex erloschen
	Kornealreflex normal Pupillen eng	x normal	Pupillen mittelweit und verminderte Lichtreaktion	Pupillen weit
	Pendeldeviation	In Ruhe konjugiert	Starr konjugiert	Verminderte Lichtreaktion
Halsmuskeln	Haltungstonus vermindert	Haltungstonus erloschen		atonisch
Extremitäten-Muskeln	oft myoklon. Zuckungen	vereinzelt myoklon. Zuckungen	hypotonisch	atonisch
Herzfrequenz	stetig gering vermindert	phasisch wechselnd	phasisch, meist vermindert	phasisch, bei Apnoe erhöht
Atemfrequenz	stetig gering vermindert	phasisch wechselnd	phasisch, meist vermindert	intermittierend apnoisch
Weckreaktionen	kurzfristig weckb. einf. verb. Antw. EEG-arousal norm.	erhöhte Weckschwelle EEG-arousal normal	nicht weckbar Geringe EEG-arousal ohne Pupillenerweiterung	keine EEG-arousal keine Reaktion auf Schmerz
	mit Pupill	mit Pupillenerweiterung	Nur Fluchtreflexe bei	
	Gezielte Abwehr	Ungezielte Abwehr	starkem schinerzreiz	
	bei Sc	bei Schmerzreiz		
Würgreflex	n	normal	vermindert oder erloschen	erloschen
Muskeldehnungsreflexe	normal	normal oder vermindert	vermindert oder erloschen	erloschen
Tag-Nacht-Periodik der Schlafregulation	erkennbar	unsicher	erloschen	erloschen

Stufe I	Tab. 2: Verschiedene Stufen der S
Stufe II	chlafmittel
Stufe III	<u>vergiftung</u>
Stufe IV	
Stufe V	

	smre i	Sture II	Sture III	Stufe IV	Stute V
Bewußtsein	Benom Anamnese möglich	Benommenheit vereinzelte Antworten	Bewußtlosigkeit	Bewußtlosigkeit	
Bewegung	u.U. Exzitation und Psychosen, »safe State«	and Psychosen,			
	Reaktion auf	Schmerzreize	Geringe Reaktion auf	Dekubitus- und	Dekubitus- und Pneumoniegefahr
	Ataxie	meist ruhig	Schmerzreize	Keine Reaktion auf Schmerzreiz	auf Schmerzreize
	Spontaner		Spontaner Lagewechsel	Kein spontane	Kein spontaner Lagewechsel
	Lagewechsel		selten		
Reflexe	Sehnen und Hust	Sehnen und Hustenreflexe erhalten	•	Sehnen- und Hustenreflexe meist fehlend	end
	Kornealreflexe er	halten, prompte L	Kornealreflexe erhalten, prompte Lichtreaktion der Pupillen		
	keine Krampf-	Reflexsteigerung	Reflexsteigerungen und Krampfneigung oft	Kornealreflex meist erhalten, keine	Kornealreflex fehlt
	neigung	bei Carbromal,	bei Carbromal, Glutethimid und Methaqua-	oder sehr schwache Pupillenreaktion	Anisokorie und Mydriasis als Signum
		lon			mali ominis
				Reflexsteigerungen und Krampfneigung oft bei Carbromal, Glutethimid und	g oft bei Carbromal, Glutethimid un
Atmung	In Seiten- oder B	In Seiten- oder Bauchlage regelmäßig und mitteltief	ig und mitteltief	Globalinsuffizienz (oberflächlich, verlangsamt, Zyanose)	angsamt, Zyanose)
	Atemwege frei		Verlegung der Atemwege	leichte Verlegung der Atemwege	ausgeprägte Verlegung der Atemwege
			möglich		in Rückenlage
	Alveolen und		Alveolen frei	Bronchiale	Bronchiale Sekretflut
	Bronchien frei			Alveolen frei	Pulmonale Komplikationen
Kreislauf	normale Puls- un	normale Puls- und Blutdruckverhältnisse	tnisse	Vasomotorenkollaps	Hypovolämischer Schock
					Tachykardie, schlecht gefüllter Puls,
				annähernd normale Amplitude	blasse Zyanose
Tempera-	normal	oft Untertemperatur	atur	oft Untertemperatur mäßigen	Hypo- oder Hyperthermie
tur				Grades	
Blutbild	Normale Leukozytenwerte	ytenwerte		Leukozytose	Leukozytose durch Azidose
	Hamoglobin- un	Hamoglobin- und Erythrozytenwerte normal	te normal	ohne stärkere Linksverschiebung	Linksverschiebung nur bei infektiösen Komplikationen
				lobin und Erythrozytenwerte	Hämoglobin und Erythrozyten-An-
				normal	streg

III—3.3 Schlafmittel Drogen

8. 5. Moeschlin:

	Atmung	Corneal	Rachen Tracheal Reflexe	Sehnen
1. leicht	gut	+++	+++	++
2. mittelschwer	oberflächl.	++	+	+
3. schwer	schlecht	-	-	oft-
	evtl. Cheyne-Stokes			evtl. ++
	u. Lähmung			

9. Narkosestadien nach Guedel:

Stadium I Einschlaf Stadium: Einschränkung des Bewußtseins, der Sinnes Wahrnehmung, der Kritik und der Orientierung. Die Atmung ist gleichmäßig, die Pupillenweite sowie der Verlauf der Reflexe ist normal. Der Muskeltonus vermindert sich zusehends. Vor dem Übergang in das zweite Stadium tritt eine zentrale Analgesie auf.

Stadium II Excitation: allgemeine Unruhe, unkoordinierte Bewegungen bis zu tonischen und klonischen Zuckungen, die sich zu schweren Erregungen steigern können. Die Atmung wird unregelmäßig; Herzfrequenzsteigerung und Blutdruckerhöhungen sind möglich; die Pupillen sind weit, reagieren jedoch auf Licht und die Bulbi rollen hin und her.

Stadium III Toleranzstadium: narkostischer Zustand; wird in vier Einzelstadien unterteilt:

- 1. Leichte Anaesthesie: Die Atemtätigkeit ist wieder koordiniert, die Extremitätenmuskulatur ist erschlafft, Bauchdeckenspannung besteht noch. Enge Pupillen, Korneal- und Lichtreflexe sind erhalten, erloschen sind Lid- und Schluckreflexe.
- 2. Chirurgische Anaesthesie: Reine Zwerchfellatmung, die Bauchdecken sind entspannt. Die Pupillen sind weiter als in III/l und reagieren träge auf Licht. Der Kornealreflex ist erloschen.
- 3. Tiefe Anaesthesie: Pupillen sind stärker erweitert als in HI/2, Lichtreflexe sind erloschen. Depression von Atmung und Kreislauf kann auftreten. In der Atmung ist die Inspiration verkürzt, die Exspiration verlängert.
- 4. Profunde Anaesthesie: Pupillen sind stärker erweitert als in III/3 und lichtstarr.

Stadium IV Asphyktisches Stadium: maximal erweiterte und lichtstarre Pupillen. Reflexe sind völlig erloschen, Zyanose, Gefahr der Asphyxie und des Herzstillstandes.

Korrektion zwischen Komatiefe und Komastadium:

Die Tiefe der Bewußtlosigkeit hängt z.B. von der Barbituratkonzentration im Gehirn und nicht von der im Blut ab.

Die Dauer der Bewußtlosigkeit hängt ab von der aufgenommenen Dosis, der Geschwindigkeit der metabolischen Inaktivierung, der Toleranzentwicklung des Patienten, der Geschwindigkeit der Elimination aus dem Körper und der nichtmetabolisierten Barbiturate aus dem ZNS. Durch die Vielzahl dieser verschiedenen Prozesse variieren Komadauer und Serumspiegel erheblich.

Die Dauer der hypnotischen Wirkung ist eine Funktion der FettlösUchkeit und der Proteinbindung der einzelnen Barbiturate. Es wird als Irrtum bezeichnet, zu glauben, langwirkende Barbiturate seien gefährlicher als kurzwirkende.

Vom Medikament aus betrachtet kann die fehlende oder schlechte Korrelation aus den verschiedenen pharmakodynamischen Gesetzen abgeleitet werden, denen sie unterworfen sind, wie Resorption (daraus folgen die Unterschiede bei der absoluten Menge der aufgenommenen Droge), FettlösUchkeit, Metabolisierung, Verteilung, Plasmaproteinbindung, Elimination. Für jeden dieser Prozesse gelten ja für jedes Medikament eigene Kenngrößen, weshalb nicht allein die Serum-Barbiturat-Konzentration als Vergleichsgröße herangezogen werden kann. Gleicherweise müssen beim Patienten Unterschiede in der Toleranzentwicklung, im Körpervolumen, durch Vorerkrankungen, durch gleichzeitige Alkoholintoxikation oder allgemein: durch Synergismus oder Potenzierung mit anderen Pharmaka usw. bedacht werden.

Bei allen Stadieneinteilungen, bei denen auch ein Giftnachweis mit durchgeführt wurde, konnte ein signifikanter Zusammenhang zwischen der Dauer und dem Stadium des Komas sowie zwischen Komatiefe und Mortalität nachgewiesen werden (STADLER).

Von allen Stadieneinteilungen ist die von *Chazan* die am leichtesten praktikable mit der größten Korrelation zur erforderlichen Therapie.

Tab. 3: Pulmonale Komplikationen bei Schlafmittelvergiftungen

1	. Bewußtseinsstörungen, Bewußtlosigkeit	fehlender Hustenreflex, verstärkter Sekretfluß	a) Aspiration von festem Material = obstruktiver Typ
			 b) Aspiration von saurem Magensaft = asthmatischer Typ = Mendelson Syndrom, Endothelläsionen durch
			den sauren Magensaft (pH unter 2,5)
2.	Atemdepression	Hypoxie, Hyperkapnie	 a) Azidose, hypoxische Endothelläsionen der Lungengefäße b) Neurogener Reflexmechanismus induziert Lungenödem (Zerebrale Hypoxie führt zu pulmonaler Venenkontraktion)
3.	Schädigung durch Schlafmittelsubstanzen		a) Direkter toxischer Effekt an den Alveolar-Kapillarmembranenb) Nachfolgende Verbrauchskoagulopathie
4.	Kreislaufzentralisation, Kreislaufschock	Hypovolämie, Hypotomie	 a) Mangelhafte Mikrozirkulation (Zyanose), Endothelläsionen b) Verbrauchskoagulopathie (DIC) c) Begleitende Katecholamin- und Fettmobilisation

(Quelle: WOLFF, T., Pulmonale Komplikationen bei Schlafmittelvergiftungen. Diss. TU München 1978)

Tab. 4: Pathohistologische Lungenveränderungen nach Aspiration, bei toxischem, hypoxischem Lungenödem und beim Schocklungensyndrom

Struktur	Aspirations- sydnrom St	adium	Toxisches Lungenödem Stadium	Schocklungen- syndrom	Stadium
Alveolen	Alveolares Ödem Alveolarepithel- schädigung Surfactantüber- produktion Lytische Nekrose Aushöhlung der Nekrose	I I II	Alveolares Ödem Alveolarsepten- verbreiterung I	Alveolares Ödem Alveolarseptenverbreiterun Alveolarepithelproliferation	-
				Mesenchymale Proliferation Hyaline Membranen	n II, III III
Inter- stitium	Interstitielles Ödem	I	Interstitielles Ödem I Perivaskuläres Ödem I Vakuolen, Pinozytose- Bläschen (Grundvorgang der Phagorglose)	interstitiones odem	II II III
Gefäße			Endothelläsionen II Mikrothromben II	Endothelläsionen	1,11 I

III-3.3 Schlafmittel Drogen

Tab. 5: Differentialdiagnose von Aspirationssyndrom, (toxischem) Lungenödem und Schocklungensyndrom—klinische Befunde

	Aspirationssyndrom	tox. Lungenödem	Schocklungensyndrom
Zeitangaben	1 h-1 1/2 h - mehrere Stunden - 48 h tritt ein akutes Lungenödem auf, nach der Aspiration	1 h - mehrere Stunden nach der Intoxikation	Wenige Stunden - mehrere Tage nach dem Schockereignis treten erste pulmonale Symptome auf. Das Terminalstadium entwickelt sich in einem mittleren Zeitraum von 7,5 Tagen.
Anamnesti- sche Ver- dachtshin- weise	Aspiration, Verdacht auf Aspiration		Unruhe des Patienten, Kreislauf- situation, Hyperventilation, eventuell schon Hypoxie
Lokali- sation	Abhängig von der Patientenlage entsteht das Lungenödem: Bauchlage: beide Lungenflügel Seitenlage: einseitige Veränderungen Rückenlage: initial Lungenoberfelder Bevorzugt entsteht das Lungenödem aus anatomischen Gründen auf der rechten Seite.	diffus, bilateral Oft aber auch asymmetrische Anordnung, was die Abgrenzung zur Pneumonie erschwert. So ist es nur an der schnellen Rückbildungsfähigkeit zu erkennen.	Nur initial zentral
Hautfarbe	Zyanose	Zyanose Schweißbedecktes Gesicht	Zyanose
Auswurf	Hämorrhagischer, wäßriger, schaumiger, sofort starker Sekretfluß	Hämorrhagischer, sofort wenig produktiver, schau- miger Sekretfluß	Hämorrhagischer, eitriger Sekret- fluß als Zeichen einer Superinfek- tion im Verlauf des Schocklun- gensyndroms im Stadium III
Atemtyp, Atemfre- quenz	Dyspnoe Tachypnoe über 40/Minute	Dyspnoe Tachypnoe	Dyspnoe im Stadium I Tachypnoe als tachypnoeische Ruhedyspnoe im Stadium II Hyperventilation initial Cheyne-Stokesscher Atemrhythmus wird häufig bei Hypnotika- Intoxikationen beobachtet.
Atemgeräusche	Trockene und feuchte Rasselgeräusche (über beiden Lungenfeldern)	Feuchte Rasselgeräusche (klingend und nicht klingend, fein bis mittelblasig) bei vesikulärem, meist verschärftem Atemgeräusch. Der physikalische Befund kann noch negativ sein, wenn die Lungenfunktion schon meßbar eingeschränkt ist, maximale Intensität aus der Basis.	Im Beginn ist das Lungenödem weder auskultatorisch noch perkutatorisch erfaßbar (das ist erst nach der Hypoxie und den Röntgenveränderungen möglich). So sind erst im Finalstadium positive Befunde zu erheben, die im Sinn eines intraalveolären Ödems zu deuten sind.

Tab. 5: Fortsetzung

	Aspirationssyndrom	tox. Lungenödem	Schocklungensyndrom
Puls EKG	Tachykardie als zunehmende Tachy- kar die über 120 Schläge/ Minute EKG: Sinustachykardie Präfinale Herzrhythmus- Störungen	Uncharakteristischer Puls, der normal oder auch weich oder frequent sein kann Relative Bradykardie möglich	Tachykardie Therapierefraktäre Rhythmus- Störungen im Stadium III Bradykardien in III beim Absau- gen der Trachea
	plikationen bei Schlafmittel dykardie bei Barbituratverg berichtet. Zerebrale, vasku aber werden direkte toxisch zens und auf kreislaufregula	vergiftungen sind sehr unter giftungen und eine Tachykard läre, neutrale Ursachen sind de Effekte auf periphere Gefä	n im Laufe der pulmonalen Kom- schiedlich. So wird über eine Bra- die bei Bromcarbamidvergiftungen in der Diskussion. Hauptsächlich iße, das Arbeitsmyokard des Her- Strukturen für die unterschiedli- führt.
Blutdruck	Abfall des Blutdrucks bis auf 60-40 mmHg systo- lisch, meistens zum Zeit- punkt des maximalen Lungenödems, als Folge der Hypoxie und des in- travasalen Volumenman- gels	Abfall des Blutdrucks als Folge der Abnahme der Herzauswurfleistung, und als Folge des Verlustes von Flüssigkeit an alveolä- re und interstitielle Kom- partments der Lunge	(Anstieg im frühen Stadium) Abfall des Blutdrucks im Stadium III
Zentraler Venendruck	Normalwerte oder leicht erhöhte Werte bei Beat- mung. Das erleichtert die Abgrenzung zur globalen Herzinsuffizienz oder zur isolierten Rechtsherzin- suffizienz	Normalwerte	Normalwerte oder uncharakteristische Veränderungen
Temperatur	Anstieg der Temperatur nach einigen Tagen, in mehreren Fällen auch schon in der akuten Phase	(Keine Hinweise auf Tem- peraturanstieg im vor- pneumonischen Stadium)	(Anstieg der Körpertemperatur) (Keine Hinweise auf ein charak- teristisches Temperaturverhalten beim Schocklungensyndrom)
	giftungen beziehen sich nur plikationen mit einzubezieh Schlafmittelvergiftungen be kationen führen zur Temper	auf die vorpneumonische Ph en. So wird hauptsächlich vor richtet. Erst die Pneumonien	iturverhalten bei Schlafmittelver- ase, ohne die pulmonalen Kom- n Hypothermien im Verlauf von infolge der pulmonalen Kompli- n Fällen des Aspirationssyndroms Phase berichtet.
Stoffwech- selstörungen	Oligurie Präfinale Anurie	(Keine Hinweise)	Oligurie im Stadium III Störung des Fettstoffwechsels

III—3.3 Schlafmittel Drogen

Tab. 6: Differentialdiagnose — Laborbefunde

	Aspirationssyndrom	Lungenödem	Schocklungensyndrom
*02	Abfall des Sauerstoffpartialdrucks sowohl im Stadium I als auch im Sta- dium II und Stadium III Beatmungsmaßnahmen vermögen oftmals nicht die Hypoxie zu verbes- sern, infolge Bronchusobliteration, Atelektasen, abnehmender Deh- nungsfähigkeit der Lungen und Aus- dehnung des Schadens.	Abfall des Sau- erstoffpartial- drucks	Abfall des Sauerstoffpartialdrucks mäßig im Stadium I stark im Stadium II bedrohlich im Stadium III Beatmungsmaßnahmen vermögen oftmals nicht die Hypoxie zu verbessern: Zunahme der Totraumventilation, Rechts-Links Shunts, abnehmende Dehnungsfähigkeit der Lungen, Fibrose und Versteifung der Lunge sind die Gründe
P rC02	Anstieg des Kohlendioxyddrucks Uncharakteristisches Verhalten	Abfall des Kohlendioxid- partialdrucks	Normal oder leicht erniedrigt im Stadium I, trotz Hyperventilation, vor ersten Rönt- genanzeichen. Erhöht im Stadium II oder Normokapnie. Erhöht im Stadium III meist über 70 mmHg
рН	Respiratorische Azidose Metabolische Azidose mitverursacht durch die Hypoxie	Leichte Azidose	Respiratorische Alkalose im Stadium I mit alveolärer Hyperventilation Respiratorische Alkalose im Stadium II Respiratorische Alkalose im Stadium III pH unter 7,35 Zusätzlich tritt eine metabolische Azidose auf (Lactatazidose) = Signum malum

Im Rahmen einer schweren Schlafmittelvergiftung ist stets mit dem Auftreten einer Verbrauchskoagulopathie zu rechnen. Synonyme Begriffe sind DIC (Disseminated intravascular coagulation) und Thrombohamorrhagic Syndrome. Das DIC-Syndrom wird nicht als ein Symptom einer spezifischen Schlafmittelvergiftung angesehen, sondern als eine Komplikation der Sedativa-Intoxikation allgemein. Makroskopisch wie mikroskopisch entsteht das Bild einer Schocklunge. So kann eine Verbrauchskoagulopathie auf 3 Wegen entstehen:

- 1. als Komplikation einer Sedativa-Vergiftung
- 2. als Folge eines Schockereignisses (mit Hypovolämie, Hypotonie, mangelhafte Mikrozirkulation)
- 3. im Rahmen einer dir. tox. Schädigung

Betroffen sind am ehesten die Lungen. Ihre Filterfunktion und ihre metabolische Aktivität dürfen nicht unterschätzt werden. Allerdings ist der kausale Zusammenhang zwischen DIC-Syndrom und Schock nicht unbestritten und noch nicht endgültig geklärt.

Thrombozyten: Abfall (als guter Indikator) Fibrinogen: Abfall (als guter Indikator) Quick: Abfall (untergeordnete Bedeutung)

Faktor II: Abfall

Faktor V: Abfall (als guter Indikator)

Faktor VII: Abfall

Faktor VIII: Abfall (als guter Indikator: initialer Anstieg im Tierversuch)

Faktor XIII: Abfall (als guter Indikator)

	Faktor I: Abfall		
Leu- kozy- ten- zahl	Erhöhung der Leukozytenzahl Mit Linksverschiebung 80% seg- mentkernige Neutrophile am 6. Tag	Normalwerte oder leichte Er- höhung mit normalem Dif- ferentialbild	
Hä-	Erhöhung der Hämatokritwerte in-	erhöht	
mato-	folge der Bluteindickung beim Lun-		
krit	genödem		
	Bemerkung: Bei 21,9% der Schlafmitt	slvergiftungen sin	d Hämatokritwerte erhöht.

Tab. 7: Differentialdiagnose - Röntgenbefunde

Aspirationssyndrom	Lungenödem	Schocklungensyndrom
Stadium I: oft unauffällig Periphäre Verschattungen, rechts bevorzugt		Stadium I: oft unauffällig Verstärkte Gefäß- und Lungengerüstzeichnung Erweiterung der zentralen und mittelgroßen Lungengefäße, gefäßarme Peripherie Trübung des Hilusschattens, Unscharfe der Hilusgefäße Fehlen der Air interface
Stadium II: diffuse Trübung bilateral, über allen Lungenfeldern	Diffuse, alveoläre Trü- bung bilateral, bevor- zugt Mittelgeschosse Kerley-Lines (als Ver- dickung der interlobulä- ren Septen) Schmetterlingsform (als Zeichen für ein akutes Ödem)	Stadium II: Zeichen des interstitiellen Lungenödems Diffuse Trübung (milchig) zentrale und peri- phere Partien der Lunge Gelegentlich Platten- und Streifenatelektasen, periphilär Interlobuläre Pleuraverdichtung Kerley-Lines können fehlen
Stadium III: Totalverschattung der Lunge		Stadium III: Azinäre Verschattungen Großflächige, konfluierende Infiltrationen Schmetterlingsform (infolge der Anatomie der Lungenkerne) Blasige Aufhellungen (akuter Spannungspneumothorax bei Überdruckbeatmung) Totalverschattung der Lungen in ca. 7,5 Tagen netzförmig (als Zeichen einer Fibrose)
Differentialdiagnose: Normale Herzgröße und Fehlen von Zeichen der pulmonal-venösen Druck- erhöhung als DD zum kar- dial bedingten ödem. Lokalisation: Die Veränderungen sind abhängig von der Position des Patienten bei der Aspi- ration.	Differentialdiagnose: Normale Herzgröße und Fehlen von Zeichen der pulmonal-venösen Druckerhöhung als DD zum kardial bedingten Ödem	Differentialdiagnose: Milchige (keine wolkige) Trübung, fehlende Kerley-Lines als DD zum kardial bedingten Ödem und zur Pneumonie Zeitlicher Ablauf: Vor den ersten radiologischen Zeichen stehen respiratorische Insuffizienzerscheinungen. So wird das DIC-Syndrom erst nach 18-72 Stunden radiologisch sichtbar. Erst danach werden die physikalischen Befunde positiv.
Zeitlicher Ablauf: Die ersten radiologischen Zeichen treten in den er- sten 12 Stunden auf.		Besonderheiten: Durch forcierte Beatmung kann eine Aufhellung der Verschattungen erfolgen, die eine Zustandsbesserung vortäuscht.

III-3.3 Schlafmittel Drogen

Schocklungensyndrom - Synonyma und verwandte Bezeichnungen

- 1. Shock lung, Schocklunge(-nsyndrom)
- 2. Acute respiratory distress Syndrome (ARDS)
- 3. Capillary leak(-age) Syndrome
- 4. Respiratory Syndrome, Syndrom der respiratorischen Insuffizienz
- 5. Congestive atelektasis
- 6. Da Nang lung
- 7. Postperfusion lung Syndrom = pump lung
- 8. Progressive pulmonary insufficiency
- 9. Respirator lung
- 10. Pulmonary massive collapse
- 11.Wetlung
- 12.Stifflung
- 13. Hemorrhagic lung Syndrome
- 14. Traumatic wet lung
- 15. Hypostatische Pneumonie
- 16. Mikroembolielunge
- 17. Beatmungslunge
- 18. Interstitielles Lungenödem
- 19. Transfusionslunge
- 20. Sauerstofflunge
- 21. Respiratorische Insuffizienz bei nicht thorazischem Trauma
- 22. Hämorrhagische Atelektase
- 23. Traumatisch bedingte Ateminsuffizienz

Nach neuesten Veröffentlichungen ist bei jeder zweiten schweren Schlafmittelvergiftung mit pulmonalen Komplikationen zu rechnen. Besonders gefährdet sind Patienten mit hohem Alter und mit sehr schweren Vergiftungen, von denen schon 40% mit einer Pneumonie zur Aufnahme kamen. Unter Berücksichtigung aller Altersstufen und aller Intoxikationsgrade ließen sich im Gegensatz dazu nur in 2% eine Pneumonie schon bei der Aufnahme feststellen. So bedeutet eine Pneumonie als Aufnahmebefund eine sehr schlechte Prognose. Immerhin kamen schon 48% von den Patienten, die später an der Intoxikation verstarben, mit einer Pneumonie in die Klinik. Auch bei den Sektionen bildete sie die häufigste Diagnose.

Aspirationen traten in Relation zur Schwere der Vergiftungen in bis zu 40% der Fälle auf.

Lungenödeme, insbesondere toxische Lungenödeme, spielen als selbständige Diagnosen eine untergeordnete Rolle, da sie mit den anderen Komplikationen untrennbar vergesellschaftet sind und somit nicht speziell erkannt werden können.

Herz- und Kreislaufstörungen sind ebenfalls wieder stark abhängig vom Patientenalter und dem Intoxikationsgrad. Allgemein hatten nur 29% der Patienten unter 60 Jahren, aber schon 63% der Patienten über 60 Jahren Funktionsstörungen des Herzkreislaufsystems. Die Angaben in der Literatur über Häufigkeiten von Hypotonie und Kreislaufstillständen sind sehr unterschiedlich, da sie von jeweils verschiedenen Zusammensetzungen des Krankenguts ausgehen. So schwanken die Zahlen über die Hypotonie (Blutdruck unter 90 mmHg systolisch) zwischen 5% und 41%, und die Angaben über Kreislauf stillstände zwischen 1% im gesamten Krankengut, 22% der schweren Vergiftungen und sogar 42% der Patienten, die an der Intoxikation verstarben.

Die Prognose der Schlafmittelvergiftungen verschlechtert sich also zunehmend mit dem Alter des Patienten, der Schwere der Vergiftung und dem Auftreten von Komplikationen, wie Aspirationen, Lungenödeme, Störungen des Herzkreislaufsystems und schließlich Pneumonien. Je früher und je tiefgreifender diese Komplikationen auftreten, um so schlechter sind die Aussichten für den Patienten. Als ebenfalls von großer Bedeutung in diesem Zusammenhang ist das Zeitintervall zwischen der Giftaufnahme und dem Beginn der klinischen Behandlung zu nennen.

Für die Diagnose und die Therapie der pulmonalen Komplikationen bei Schlafmittelvergiftungen ist eine differenzierte, pathohistologische Gegenüberstellung der Schlafmittelwirkungen auf die Lunge notwendig, Sie bildet die Basis für die Differentialdiagnose und die unterschiedlichen Ansatzpunkte der Therapie. Denn Sedativaintoxikationen können auf sehr unterschiedlichen Wegen zu Schädigungen an der Lunge führen:

1. Bewußtseinsstörungen bis zur Bewußtlosigkeit können durch den fehlenden Hustenreflex und den verstärkten Sekretfluß Aspirationen von festem Material und saurem Magensaft verursachen. Während das feste Material nur lokal obstruktiv wirkt und nur lokale Entzündungen hervorruft, setzt der saure Magensaft ausgedehnte Läsionen an den Alveolarendothelien. Diese Schäden sind um so stärker, je saurer der pH des Magensaftes ist. Schon im ersten Stadium entsteht ein alveoläres und ein interstitielles Ödem. In den nächsten Stadien schließen sich lyrische Nekrosen und deren spätere Aushöhlung an.

- 2. Atemdepressionen führen über Hypoxie, Hyperkapnie und Azidose ebenfalls zu Endothelschäden, diesmal aber an den Lungengefäßen. Wiederum entsteht in deren Folge ein interstitielles und alveoläres Ödem. Ein Nebeneffekt der Hypoxie ist ein neurogener Reflexmechanismus, der eine pulmonale Venenkontraktion bewirkt. Die Folge ist eine Erhöhung des Drucks in den Gefäßen und damit ein Ödem.
- 3. Schlafmittelsubstanzen selbst können die Permeabilität der Alveolar-Kapillarmembranen verändern. Die damit verbundene Flüssigkeitsverschiebung bedingt ein interstitielles und alveoläres Ödem. Im Gegensatz zum Aspirationssyndrom und zum hypoxischen Syndrom entstehen hier die Endothelschäden erst später im Stadium II, also infolge des Ödems. Die Möglichkeit einer damit in Zusammenhang stehenden Verbrauchkoagulopathie ist in Diskussion.
- 4. Kreislaufzentrahsation und Kreislaufschock haben Hypovolämie und Hypotonie zur Folge und eine daraus resultierende mangelhafte Mikrozirkulation. Wie beim hypoxischen Syndrom werden dadurch zuerst Endothelläsionen an den Lungengefäßen gesetzt. Eine Verbrauchskoagulopathie mit Mikrothromben als ersten Zeichen entsteht. Im Stadium II bildet sich ein im Gegensatz zu allen anderen Mechanismen nur interstitielles Ödem.

Erst in der Terminalphase schließt sich ein alveolares Ödem an. In diese Phase fällt auch die Bildung hyaliner Membranen und die Entstehung einer interstitiellen Fibrose. Besonders in dem Anfangsstadium sind diese Veränderungen von einer Katecholamin- und Fettmobilisation begleitet.

Da das oben genannte »Hypoxische Syndrom« im Rahmen dieser Arbeit eher von allgemeinerer Natur ist, konzentriert sich die differenzierte Betrachtung hauptsächlich auf

- 1. das Aspirationssyndrom,
- 2. das toxische Lungenödem und
- 3. das Schocklungensyndrom

So ergibt die Auswertung der Literatur und der eigenen Kasuistiken im Hinblick auf die drei obengenannten pulmonalen Komplikationen folgende differentialdiagnostische und therapeutische Kriterien und Probleme:

1. Zeitpunkt des Krankheitsbeginns:

Da alle drei Komplikationen schon eine Stunde nach dem verursachenden Ereignis auftreten können, ist den anamnestischen Angaben besonderer Wert beizumessen. Schon bei Verdacht auf eine Aspiration, die Einnahme von Sedativa, Unruhe des Patienten, Kreislaufschwierigkeiten, Hyperventilation oder schon Hypoxie sollte eine intensive pulmonale Beobachtung veranlaßt werden. Intubationen und andere Intensivmaßnahmen sind gerechtfertigt. Dagegen sind Lungenbiopsien als frühdiagnostische Maßnahmen für die Routine geeignet.

2. Pulmonales Erscheinungsbild:

Zyanose, Dyspnoe und Tachypnoe sind in allen drei Fällen anzutreffen. Für das Schocklungensyndrom ist weiterhin eine initiale Hyperventilation kennzeichnend.

Aufgrund der Magensaftaspiration und dem verstärkten Sekretfluß ist beim Aspirationssyndrom ein starker, hämorrhagischer Auswurf zu beobachten, und sind sofort trockene und feuchte Rasselgeräusche auskultatorisch feststellbar. Der Sekretfluß beim toxischen Lungenödem ist dagegen wesentlich schwächer, womit auch der physikalische Befund erst später zu erheben ist, oftmals erst nach einer meßbaren Einschränkung der Lungenfunktion.

Auswurf und auskultatorische sowie perkutatorische Befunde gehören nicht zum akuten Bild des Schocklungensyndroms.

Somit sollte die Sekretdrainage im Vordergrund der Therapie stehen, die besonders im Fall des Aspirationssyndroms unter Sicht (mit einem *flexiblen Bronchoskop*) oder als Bronchialwäsche durchgeführt werden sollte.

III—3.3 Schlafmittel Drogen

Sekretolytika können unterstützend wirken. Ebenfalls können Bronchodilatoren in allen drei Fällen von Nutzen sein, deren Erfolg beim Schocklungensyndrom aber auch ungenügend sein kann. Wie auch Atmungsanaleptika bei den erhöhten Atemwegwiderständen nicht immer zu dem erwünschten Ziel führen müssen.

3. Herz und Kreislauf:

Im Rahmen der Schlafmittelvergiftungen sind sowohl Tachykardien als auch Bradykardien möglich, deren Ursachen noch in der Diskussion sind. Hauptsächlich aber werden direkte toxische Effekte an kreislaufregulatorisch wirkenden Strukturen angeführt. Bei den pulmonalen Komplikationen ist demgegenüber jedoch mit Tachykardien und präfinalen Herzrhythmusstörungen zu rechnen. Allen drei Syndromen ist auch ein Abfall des Blutdrucks gemeinsam. Damit ist eine Anwendung von Herzglykosiden und kreislaufaktiven Pharmaka, deren Erfolg zumindest beim Schocklungensyndrom als noch fraglich gilt, in der Therapie zu erwägen. Beim toxischen Lungenödem werden daneben Ganglienblocker und für das Schocklungensyndrom eine medikamentöse Sympathikusblockade empfohlen, wogegen letztere noch eine umstrittene Methode darstellt.

Der zentrale Venendruck verhält sich uncharakteristisch.

4. Diagnose und Therapie einer Infektion:

Die Temperatur ist ein schlechter Parameter für die Erkennung einer pulmonalen Infektion. Einerseits induzieren Schlafmittel Hypothermien, andererseits gibt es kein kennzeichnendes Verhalten der Temperatur bei den pulmonalen Komplikationen. Selbst bei den Patienten, die an einer Pneumonie infolge einer Schlafmittelvergiftung verstarben, war eine Temperaturerhöhung über 38,5° nur in 13% nachweisbar. Dagegen bestand regelmäßig eine Leukozytose, die somit ein sicheres Zeichen für eine Infektion darstellt. Aber auch das Aspirationssyndrom geht mit einer Erhöhung der Leukozytenzahl einher. Therapeutisch wird demnach eine rechtzeitige antibiotische Abschirmung für ein breites Spektrum empfohlen. Für die Verhinderung einer Pneumonie stellen antibiotische Prophylaxe und ständige Sputumkulturen die wichtigsten Maßnahmen dar. Besonders für das Aspirationssyndrom wird auch ohne Erregertestung eine antibiotische Basistherapie empfohlen.

5. Röntgen-Befunde:

Das Aspirationssyndrom und das Schocklungensyndrom lassen sich prinzipiell in drei ähnlichen Phasen röntgenologisch erfassen. Das Stadium I kann bei beiden unauffällig sein, das Stadium II ist von einer diffusen Trübung gekennzeichnet und das Stadium III endet in einer Totalverschattung. Das schattige Lungenödem weist dagegen keinen phasenhaften Verlauf auf.

Im Stadium I ist das Schocklungensyndrom an einer verstärkten Gefäß- und Gerüstzeichnung, gefäß- armer Peripherie und wie das Aspirationssyndrom an einer Hilusverschattung zu erkennen.

Im Stadium II des Aspirationssyndroms und des Schocklungensyndroms schließt sich eine zentrale und periphere Trübung an, die auch für den Beginn des toxischen Lungenödems kennzeichnend ist, bei diesem jedoch die Mittelgeschosse bevorzugt. Platten- und Streifenatelektasen, interlobuläre Pleuraverdickungen und nur gelegentliche Kerley-Lines sind weitere Röntgenzeichen des Schocklungensyndroms im Stadium II. Auch beim toxischen Lungenödem finden sich Kerley-Lines. Das Stadium III des Aspirationssyndroms und des Schocklungensyndroms ist durch großflächige, anfänglich noch azinäre, später jedoch totale Verschattungen charakterisiert. Diese können beim Schocklungensyndrom netzförmig als Zeichen einer Fibrose sein, und sich in ca. 7,5 Tagen entwickeln. Die ersten radiologischen Zeichen treten beim Aspirationssyndrom schon nach 12 Stunden auf, während beim Schocklungensyndrom vor den ersten radiologischen Zeichen respiratorische Insuffizienzerscheinungen stehen und die physikalischen Befunde erst ganz am Schluß zu finden sind.

Spezifisch für das Aspirationssyndrom ist die Lokalisation der Lungenveränderung. Sie ist im wesentlichen abhängig von der Position des Patienten während der Aspiration.

Als wichtigste differentialdiagnostisches Mittel zur Abgrenzung der drei Syndrome gegenüber der kardial bedingten Ödemen stehen die normale Herzgröße und die fehlenden Zeichen einer pulmonalvenösen Druckerhöhung zur Verfügung. Beim Schocklungensyndrom ermöglicht außerdem die fehlende wolkige Trübung die Abgrenzung.

Letztlich ist noch zu beachten, daß eine forcierte Beatmung eine Aufhellung der Verschattungen bewirkt.

6. Blutgasanalyse und Beatmungstherapie:

Allen drei Syndromen ist ein Abfall des Sauerstoffpartialdrucks gemeinsam. Das Verhalten des Kohlendioxidpartialdrucks dagegen ist sehr unterschiedlich. Während er noch beim Aspirationssyndrom ansteigt, als Folge der durch Magensaft und Sekret verstopften Atemwege, fällt er beim toxischen Lungenödem durch die Tachypnoe ab. Durch die initiale Hyperventilation beim Schocklungensyndrom ist er bei diesem im Stadium I entweder normal oder erniedrigt, erhöht sich dann aber wesentlich im Stadium II und III. Eine Zunahme der Totraumventilation, Rechts-Links-Shunts, abnehmende Dehnungsfähigkeit der Lungen, Fibrosen und Versteifungen der Lunge sind die Gründe.

So kommt es beim Aspirationssyndrom zu einer respiratorischen Azidose, die durch eine metabolische Azidose ergänzt wird.

Auch beim toxischen Lungenödem entsteht eine leichte Azidose. Beim Schocklungensyndrom dagegen entwickelt sich durch die initiale Hyperventilation eine respiratorische Alkalose im Stadium I und IL Erst im Stadium III ist eine respiratorische Azidose infolge des erhöhten Kohlenstoffdioxiddrucks zu finden, die oft mit einer metabolischen Azidose (Lactatazidose) verbunden ist und somit ein Signum malum darstellt. Aufgrund dieser komplizierten Blutgasverhältnisse, die mit Fortschreiten der Krankheit immer schwerer zu beherrschen sind, wird allgemein eine Beatmungstherapie mit IPPB (Intermittent positive pressure breathing) in verschiedenen Modifikationen empfohlen:

PEEP: Positiver endexpiratorischer Druck, zur Therapie des interstitiellen Ödems.
NEEP: Negativer endexpiratorischer Druck, zur Therapie der Totraumventilation.
HOLD: Endinspiratorisches Plateau, zur Therapie der restriktiven Inhomogenität

DEEP: Periodische Tiefatemzüge, zur Therapie von Kohäsionen und Adhäsionen bei Sekretreten-

tionen und zur Atelektasenprophylaxe.

LOW FLOW: Niedrige inspiratorische Atemstromstärke, zur Therapie der obstruktiven Inhomogenität.

Eine prophylaktische Beatmung mit PEEP wird nur für ein zu befürchtendes Schocklungensyndrom angeraten. Zur Therapie des Aspirationssyndroms und des Lungenödems ergeben PEEP, eventuell in Kombination mit DEEP, und im Fall des Lungenödems in Verbindung mit HOLD blutgasanalytisch die besten Verhältnisse.

Die Beatmungsmodifikationen beim Schocklungensyndrom sind nach der Stadieneinteilung des Syndroms auszurichten. So ergeben sich im Stadium I und II mit PEEP, HOLD, LOW FLOW die besten Blutgasergebnisse. Der damit verbundene hohe Beatmungsmitteldruck durch HOLD bewirkt allerdings einen Blutdruckabfall. Für das Stadium II und III erweist sich PEEP und HOLD als günstig. Im Stadium III ist es schon sehr schwierig, die besten Beatmungsformen zu bestimmen. NEEP und HIGH FLOW sind zwar kreislauffreundlich, bedingen aber eine beträchtliche respiratorische Beeinträchtigung. PEEP und HOLD wirken sich blutgasanalytisch günstiger aus, die Kreislaufsituation verschlechtert sich dagegen durch HOLD wesentlich

Neben diesen beatmungstechnischen Schwierigkeiten, ist wegen der zunehmenden Hypoxie eine hohe Sauerstoffkonzentration notwendig, womit das Problem der Sauerstofftoxizität mit Bildung von hyalinen Membranen und Fibrosen die Prognose erheblich verschlechtert. Dem ist durch gezielte Beatmungstechnik und damit niedrig zu haltenden Sauerstoffkonzentrationen Rechnung zu tragen. Dies wird in den terminalen Phasen um so schwieriger, als Beatmungsmaßnahmen hier die Blutgasverhältnisse kaum noch beeinflussen können.

Letztlich besteht noch die Gefahr bei IPPB-Beatmung, daß Pneumothoraces und Emphyseme auftreten können. Die durch forcierte Beatmung röntgenologische Aufhellung wurde schon oben erwähnt.

7. Gerinnungsstörungen und deren Therapie:

Eine Verbrauchskoagulopathie kann entstehen:

- 1. als Komplikation einer Sedativvergiftung,
- 2. als Folge eines Schockereignisses
- 3. im Rahmen einer direkten toxischen Schädigung, z.B. von Alveolar-Kapillarmembranen, in deren Folge das toxische Lungenödem entsteht.

Inwieweit diese einzelnen Mechanismen in Zusammenhang miteinander stehen, oder auch unabhängig voneinander auftreten können, oder sogar überhaupt existieren (Punkt 3), ist noch nicht geklärt. Da aber die Verbrauchskoagulopathie in letzter Zeit als Komplikation immer häufiger in Erscheinung tritt, was eine Folge der in den letzten Jahren erarbeiteten genaueren Begriffsbestimmung und verbesserter

III-3.3 Schlafmittel Drogen

Labortechniken ist, muß auf jeden Fall bei Schlafmittelvergiftungen und deren pulmonalen Komplikationen mit ihrem Auftreten gerechnet werden. Auch im eigenen Krankengut waren bei fast jedem der in Frage kommenden Patienten Anzeichen für eine Verbrauchskoagulopathie vorhanden. Schon diese Tatsachen, aber auch die Schwierigkeiten, die bei der Therapie einer einmal begonnenen Verbrauchskoagulopathie mit ihrer Eigengesetzlichkeit anzutreffen sind, rechtfertigen eine prophylaktische Heparinisierung. Dabei sind etwa 15.000 E pro Tag in einer Dauerinfusion ausreichend. Hat die Verbrauchskoagulopathie bereits eingesetzt, erkenntlich am Abfall der Thrombozyten, Fibrinogen, der Faktoren II, V, VIII, XIII, die dafür besonders gute Indikatoren sind, ist die Gabe von Heparin nicht mehr zu umgehen. Je nach den Veränderungen sind zwischen 10.000 E und 30.000 E/Tag für 4-23 Tage notwendig (siehe Therapie-Tabelle 5), wobei die Dosierung sich nach den Gerinnungsfaktoren, der Hypoxie und den Lungenveränderungen zu richten hat. Daneben ist selbstverständlich eine symptomatische Therapie anzustreben. Vitamin K Antagonisten sind nur bedingt von Nutzen, Dicumarol dagegen überhaupt nicht, da seine Wirkung zu spät einsetzt. Da Heparin Hämorrhagien und intraalveoläre Blutungen verursachen kann, muß die Dosierung immer so niedrig wie möglich erfolgen.

Häufig folgt auf die Verbrauchskoagulopathie die sekundäre Fibrinolyse, welche »einen Versuch des Or ganismus zur Selbstheilung« darstellt. Das bedeutet, daß man mit Fibrinolytika, wie Streptokinase und Urokinase, die Fibrinolyse unterstützen kann. Allerdings können sie zwar ausgefälltes Fibrin auflösen und neue Plättchenaggregate verhindern, aber fertig gebildete Thromben nicht mehr zersetzen.

Deshalb sollten sie nur solange verabreicht werden, wie die intravasale Gerinnung noch im Laufen ist. Erfolgsnachweise stehen aber noch aus. Auch ist hier mit einer hämorrhagischen Diathese zu rechnen. Aus den oben genannten Gründen sollten Epsilon-Aminokapronsäure und Aprotinin (Trasylol) als Antifibrinolytika nicht gegeben werden, oder nur dann, wenn die Fibrinolyse zum vorherrschenden Problem wird.

Kallikreininhibitoren sollten nur zur Prophylaxe angewendet werden.

Bei einer akuten Verbrauchskoagulopathie kann ebenfalls eine Substitutionstherapie mit Vollblut, Plasma und Fibrinogen von Nutzen sein.

Gelingt es nicht, die Gerinnungsstörungen frühzeitig zu erkennen und zu beherrschen, können sie neben den pulmonalen Komplikationen gleichwohl zum limitierenden Faktor in der Prognose für Schlafmittelvergiftungen werden.

8. Kortikoid-Therapie:

Die Ziele einer Kortikoid-Therapie können sehr unterschiedlich sein. Sie reichen von einer Vasodilatation, über eine Verminderung der Kapillarpermeabilität, spasmolytische und antiphlogistische Effekte, bis zu einer Einwirkung auf Blutbestandteile. Zur Prophylaxe eines zu erwartenden Schocklungensyndroms eignet sich Prednisolonhemisuccinat und nach einem kürzlich veröffentlichten Bericht Methylprednisolonnatriumsuccinat (MSS). MSS, in vierzehnmal höheren Dosen als üblich gegeben, soll die Formveränderungen der Leukozyten beim Schocklungensyndrom verhindern, und damit die Freisetzung der Enzyme zur Infektabwehr und die hiermit verbundene Zerstörung des Lungengewebes. MSS soll das unschädlichste der Steroide sein und keine Nebenwirkungen besitzen.

Im Stadium I des Schocklungensyndroms ist die Anwendung von Methylprednisolon (30 mg/kg Körpergewicht in einer einmaligen Kurzinfusion von 10-15 Minuten) zur Vasodilatation und Verminderung der Kapillarpermeabilität von Nutzen. Der Erfolg von einer Methylprednisolon-Langzeittherapie ist noch umstritten. Antiphlogistische und spasmolytische Effekte am Bronchialsystem und eine Mehrproduktion von Surfactant durch Pneumozyten II Stimulation wären ihr Ziel.

Der direkten Schädigung der Schlafmittelsubstanzen an den Alveolar-Kapillarmembranen, die eine erhöhte Eiweißdurchgängigkeit zur Folge hat, kann man mit Solu-Decortin begegnen. Kalzium und Antihistaminika können hier unterstützend wirken.

Bei Aspirationssyndrom sollen Kortikoide hauptsächlich vor größeren Schäden durch den Magensaft schützen. Dabei stehen Prednisolon (750-1000 mg in 24 Stunden) und Hydrokortison (100 mg i.v. sofort, dann 100 mg alle 8 Stunden für 72 Stunden, dann 25 mg alle 6 Stunden für 2 Tage) zur Verfügung. Erfolgsnachweise stehen auch hier noch aus.

Bei der Kortikoid-Therapie ist zu bedenken, daß die Infektabwehr stark eingeschränkt wird, was eine mögliche Entwicklung einer Pneumonie beschleunigen könnte. So sollte sich die Gabe von Kortikoiden auf die Prophylaxe und besonders schwere Krankheitsverläufe beschränken und immer von einer antibiotischen Abschirmung begleitet sein.

Beim Aspirationssyndrom und beim Schocklungensyndrom ist bei Fortschreiten der Krankheit eine Oli-

9. Flüssigkeitshaushalt:

gurie und teilweise eine präfinale Anurie zu beobachten. Flüssigkeitsverluste an die Ödeme und Abfall des Blutdrucks sind die Gründe. Insbesondere beim Aspirationssyndrom erhöhen sich die Hämatokritwerte. Wobei festzustellen ist, daß bei 21% der Schlafmittelvergiftungen ebenfalls die Hämatokritwerte ansteigen, als Folge der Dehydration. Somit ist sowohl bei den Schlafmittelvergiftungen allgemein, als auch bei ihren pulmonalen Komplikationen der Infusionstherapie ein großer Wert beizumessen, besonders deshalb, weil auf der einen Seite genug infundiert werden muß, auf der anderen Seite der Flüssigkeitsgehalt der Lunge nicht mehr wesentlich steigen darf, da damit die Sauerstoffaufnahme noch weiter vermindert würde. Die forcierte Diurese bei Sedativavergiftungen stellt hier ein spezielles Problem dar. Die Entwicklung eines Schocklungensyndroms kann kurzzeitig durch Blut-, Plasma- und Dextraninfusionen verhindert werden. Allerdings kann das Bild einer Schocklunge auch noch 72 Stunden nach dem Schockereignis auftreten. Zur Therapie eignen sich niedermolekulare Dextrane für die Aufrechterhaltung der Mikrozirkulation; Albuminsubstitutionen normalisieren den intravasalen onkotischen Druck. Diuretika können diese Therapie hilfreich unterstützen, werden aber im Stadium III des Schocklungen-

syndroms keinen Erfolg mehr zeitigen, so daß man hier zur Dialyse greifen muß. Ein Nebeneffekt der

Verkehrstüchtigkeit:

Infolge der langen Wirkdauer (Plasmahalbwertszeit von Phenobarbital-Luminal® von 24-96 Stunden, Gluthemid-Doriden® 12 Stunden) kann die Wirkung einer am Abend zuvor eingenommenen Schlaftablette am nächsten Tag eventuell noch nicht abgeklungen sein.

Peritonealdialyse ist ein verbesserter pulmonaler Gasaustausch.

Bei täglich wiederholter Zufuhr und langsamer Elimination des Schlafmittels kann es kumulieren (Plasmahalbwertszeit von Bromid 12 Tage).

Chloralhydrat (Chloraldurat) läßt am nächsten Tage keine Nachwirkungen auftreten. Allerdings ist die zu empfehlende Dosis von 0,5 bis 1,5 Gramm für manchen Menschen nicht ausreichend. Außerdem läßt die Wirkung nach einigen Tagen nach. Sonst gejiört es, gemessen an der Verkehrstüchtigkeit am darauffolgenden Tag, zu den Mitteln erster Wahl.

Methaqualon ist unzuverlässig in bezug auf Plasmahalbwertzeit (6 bis 19 Stunden). Es kann zu Rauschzuständen führen. Zunehmend wird es in Kombination oder als Ersatz für Haschisch genommen. Verkehrsteilnehmern ist es wegen der Gefahr der Instabilität der Stimmungslage nicht zu empfehlen.

Hausarzt:

Prinzipiell sollte bei jeder Verschreibung von zentral dämpfenden Mitteln auf die mögliche Gefährdung im Straßenverkehr hingewiesen werden.

Toxizität:

Als Faustregel kann gelten, daß mit gefährlichen Vergiftungen dann zu rechnen ist, wenn Schlafmittel in 15- bis 20facher Normdosis (d.h. 15-20 Tabletten!) eingenommen wurden.

Hypothermie:

Eine häufige Komplikation von Schlafmittelvergiftungen ist eine Hypothermie. Eine schlafmittelbedingte Hypothermie von 22,7 °C wurde überlebt (eigene Beobachtung). Eine möglicherweise letale Komplikation einer schweren Hypothermie ist eine Pankreatitis mit irreversiblem Schock.

Durch wiederholte Gaben von Medizinalkohle über eine Magensonde kann dem vorgebeugt werden.

CPK-Erhöhung:

Infolge einer langen Liegezeit bei veränderter Stoffwechsellage kann es bei Schlafmittelvergiftungen zu schweren Dekubitalgeschwüren kommen und die CPK auf Werte bis 55.000 ansteigen (anschließend GPT bis 400, später LDH bis 300 erhöht). Die Dekubitalgeschwüre sind charakteristisch, wenn auch nicht pathognomonisch.

Es handelt sich dabei um Erytheme, in deren Zentrum zunächst Blasen, später Nekrosen entstehen können. Prädilektionsort sind Knöchel, laterale und kardiale Kniegelenkregion und Hüfte, weiterhin Finger- und Handgelenke und Ellenbogen- und Schulterregion.

Myoglobinurie:

Es wurde eine schwere Schlafmittelvergiftung beschrieben, die durch Myoglobinurie tödlich endete. Meist handelt es sich um die kombinierte Einwirkung einer schlechten Durchblutung durch sehr langes Liegen mit Drosselung der Arterien in einer ungünstigen Lage bei gleichzeitiger Abkühlung. Neu ist der Behandlungsvorschlag, daß man, wenn eine Hämodialyse nicht durchführbar ist oder sich nicht als wirksam erweist, einen frühzeitigen und wiederholten Plasmaaustausch in Erwägung ziehen soll. Bei den hier mitgeteilten vier Fällen wurde diese Maßnahme aber noch nicht durchgeführt, und alle vier Fälle kamen ad exitum.

Therapieschema:

Hausarzt:

Atmung und Kreislauf stabilisieren: Atropin-Injektion (1 mg i.m.).

Klinik:

Clinik:				
Vergiftung	leicht Reaktion auf Schmerzreize	mittel keine Reaktion auf Schmerzreize	schwer keine Reaktion auf Schmerzreize	
			+ Schock und/oder Atemdepression	
	02 :	Intubationsversuch, O2	Intubation, Beatmung	
	peripherer Venenzugang	zentraler Venenzugang		
	100 mval Natriumbikar- bonat 500,0 0,5% NaCl	250 mval Natriumbikarbonat 500,0 Plasmaexpander		
5% 100 m 500,0 0,9° NaCl 100 500,0 Glu	100 ml/h ↓	Blasenkatheter (nur 500 r	nl initial ablassen)	
		Röntgen-Thorax: Tubusla Röntgen-Thorax: Giftresi	age + Lage des zentralen Katheters te-Magen	
	500,0 Glukose 5% 100 ml/h 500,0 0,9% NaCl 100 ml/h		Dialyse organisieren falls Atemdepression und Schock 500,0 Mannit 10% 500 ml/h Nierenfunktion für forcierte Diurese)	
	500,0 Glukose 5% 100 ml/h	nicht ausreichend: evtl. Dialyse	nicht ausreichend: unbedingte Dialyse (Hämoperfusion und Hämodia- lyse kombiniert, evtl. Peritoneal- dialyse)	
	Kalium-Substitution usw. bis zum Erwachen	ausreichend: forcierte alkalisierende Diurese (Urin pH 7–8)	ausreichend bei Atemdepression oder Schock: forcierte alkalisierende Diurese (Urin pH 7–8)	

Besserung

Fortführung

Verschlechterung (nach 8 Stunden)

Dialyse

Vergiftung leicht	mittel	schwer
		lekompretten und Natriumsulfat über Ma- ım Erwachen instillieren
	12stündlich hob Kohlestuhls	hen Darmeinlauf bis zum Erscheinen eines
	stündliche Urin	pH-Kontrolle
	und Blut; Blut:	Fall-Labor-Bestimmung (Elektrolyte in Harn Harnstoff, Kreatinin, CPK, GOT, GPT, Bili, ngsfaktoren, Hb, Hk)
	Monitorüberwa	nchung
	stündlicher Lag	ewechsel zur Dekubitusprophylaxe

nur bei gesicherter Aspirationspneumonie (Röntgen) Antibiotika

protrahierter Schock: 500 IE *Heparin/h*.

ZVD mit Plasmaexpandern auf 7 cm H₂O anheben

PEEP-Beatmung zur Prophylaxe bzw. Therapie einer Schocklunge bei protrahiertem Schock oder massiver Aspirationspneumonie

falls nach Beatmung und Volumenzufuhr immer noch eine Hypotonie besteht: Dopamin im Dauertropf

nach dem Erwachen bzw. Sinken der Giftkonzentration im Blut ZVD niedrig halten: um 0 cm H₂0 (Verhinderung eines Hirnödems bzw. einer Schocklunge)

vor und nach Extubation Auxiloson Spray (Glottisödem-Prophylaxe)

Stets (sozial-) psychiatrische Nachbetreuung! Den Einsatz nicht abhängig machen von der Schwere der Vergiftung! IH-3.3 Schlafmittel Drogen

Tab. 8: Therapie - Allgemeine Therapie

Aspirationssyndrom	Toxisches Lungenödem	Schocklungensyndrom
Übliche	e Intensivtherapie - Maßi	nahmen
Als prophylaktische Verhinderung der Aspiration ist zu einer sofortigen Intu- bation zu raten		Zur Erfassung des Frühstadiums des Schocklungensyndroms ist eine Lun- genbiopsie notwendig. Als Routineun- tersuchung ist sie jedoch mit zu vielen Komplikationen verbunden
Sekretdrainage	Sekretdrainage	Sekretdrainage Eventuell Sekretolytika
Absaugen unter Röntgendurchleuchtung Bronchoskopisches Absaugen Bronchialwäsche mit verdünnter Humanalbuminlösung (zu jeweils 10 ml) Sputumkultur Liegt die Aspiration mehr als 12 Stunden vor Therapiebeginn, sind diese Maßnahmen meistens ohne Erfolg.		

Tab. 9: Therapie - Medikamentöse Therapie

Aspirationssyndrom	Toxisches Lungenödem	Schocklungensyndrom
Bronchodilatoren Aminophyllin 250 mg i.v. in 500 ml Dextrose und H ₂ 0 in 8 Stunden	Brochodilatoren Euphyllin 0,24 bewirkt neben Bronchodilatation mit Senkung der inspiratorischen Atemwider- stände auch eine periphere Vaso- dilatation Eventuell auch Nitroglycerin und Papaverin (Diktator glatter Mus- keln)	Brochodilatoren Der Erfolg kann ungenügend sein. Atmungsanaleptika Mit nur begrenztem Erfolg bei erhöhten Atemwegwiderständen Micoren 0,22, 4—6 Ampullen täglich i.m. oder als Infusion für längerdauernde Wirkung
Herz- und Kreislaufmittel Eventuell Digitalis im aku- ten Stadium Eventuell Blutdruckmittel	Herz- und Kreislaufmittel Keine Blutdruck- und Pulsstei- gernden Pharmaka, da sie den Druck in den Pulmonalarterien erhöhen. Adrenolytika wie Hydrazinophta- lazine (Nepresol, Adelphan) und Veratrum-Alkaloide Ganglienblocker wie Dibenamin, Pendiomid, Hexamethonium zur Gefäßdilatation	Herz- und Kreislaufmittel Eventuell Herzglycoside Kreislaufaktive Pharmaka wie Novadral, Akrinor Vasodilatorische Pharmaka wie Hydergin, Alupent Der Erfolg von gefäßaktiven Pharmaka ist noch nicht erwiesen. Medikamentöse Sympathikus-Blockade verhindert die sympathikusinduzierte Vasokonstriktion. Eine umstrittene Methode
	Kalzium und Antihistaminika begegnen der erhöhten Eiweißdurchgängigkeit der Kapillarwände beim toxischen Lungenödem. Eventuell in Kombination mit Prednisolon oder Dexamethason.	

Tab. 9: Fortsetzung

Tub. 7. I offsetzung	<u> </u>	0.1.111
Aspirationssyndrom	Toxisches Lungenödem	Schocklungensyndrom
		Frühe Basensubstitution Bewirkt oft eine überschießende meta- bolische Alkalose
Antibiotika Als Basistherapie ohne Erregertest: Ampicillin 15-20 g und Gentamycin 180-240 mg in 24 Stunden Als Therapie verschiedene Kombinationen von Penicillin G, Streptomycin, Ampicillin, Tetracyclin, Cephalotin Bei St. aureus: Methicillin mit Penicillin G und Streptomycin Bei Pseudomonas und E. Coli: Colistimethate (Colistin), oder Kanamycin mit Cephalotin Bei forc. Diurese ist eine Erhöhung der Dosis notwendig		Antibiotika Als prophylaktische Abschirmung Antibiotika mit breitem Spektrum
Als Therapie: 1. Prednisolon, 750-1000 mg in 24 Stunden 2. Hydrokortison, 100 mg i.v. sofort, dann 100 mg alle 8 Stunden für 72 Stunden, dann 25 mg alle 6 Stunden für 2 weitere Tage, begleitet von an-	Als Therapie: Solu-Decortin, 25 mg i.m., schränkt die er- höhte Eiweißdurch- gängigkeit der Kapil- larwände beim toxi- schen Lungenödem ein	Kortikoide Als Prophylaxe: 1. Prednisolonhemisuccinat 2. Methylprednisolon = MSS - Natriumsuccinat in 14mal höheren Dosen als üblich. MSS verhindert die Formveränderung der Leukozyten und die Freisetzung der Leukozytenenzyme. MSS ist das unschädlichste der Steroide und hat keine Nebenwirkungen. Als Therapie: 1. Methylprednisolon, 30 mg/kg Körpergewicht, in einer einmaligen Kurzinfusion (10-15 min), bewirkt Vasodilatation und Verminderung der Kapillarpermeabilität. Positiver Erfolg ist nur im Stadium I möglich.
Kortikoide sollen die Lunge vor größeren Schäden durch den Magensaft schützen. Jedoch fehlen dafür Nachweise, und außerdem ist die Infektabwehr eingeschränkt		2. Methylprednisolon, 1-2 mg/kg Körpergewicht als Langzeittherapie ist noch umstritten. Es hat einen antiphlogistischen und spasmolytischen Effekt am Bronchialsystem und soll eine Mehrproduktion von Surfactant durch Pneumozyten II Stimulation bewirken.

III—3.3 Schlafmittel Drogen

Tab. 9: Fortsetzung

Aspirationssyndrom Toxisches Lungenödem Schocklungensyndrom

Heparin:

Da die Verbrauchskoagulopathie sowohl im Rahmen einer Schlafmittelvergiftung im allgemeinen, als auch speziell bei dem Schocklungensyndrom auftreten kann (s.o.), wird ihre Therapie hier unter allen drei pulmonalen Komplikationen abgehandelt.

Zur Prophylaxe:

- 1. Da Heparin bereits gebildete Mikrothromben nicht mehr auflösen kann, Mikrothrombosierung dann also nicht mehr verhindern kann und sogar von einer Eigengesetzlichkeit einer einmal begonnenen Thrombosierung gesprochen wird, wird eine prophylaktische Heparinisierung empfohlen. Diese sollte allerdings schon erfolgen, wenn noch keine Änderung des Gerinnungsstatus nachzuweisen ist. Sie ist auch bei langzeitbeatmeten Patienten zur Embolie-Prophylaxe anzuraten.
- 2. 10 000-15 000 E, 15 000-25 000 E pro Tag, in Dauerinfusion.
- 3. Es ist fraglich, ob es nach den unter 1. genannten Gründen ausreicht, mit der Heparinisierung des Patienten erst dann zu beginnen, wenn die Thrombozyten und das Fibrinogen bereits im Abfallen sind.

Zur Therapie:

- 1. Hat die Verbrauchskoagulopathie schon eingesetzt, ist die Gabe von Heparin notwendig.
- 2. Bei DIC, keiner Hypoxie, keiner Lungenveränderungen:
- 10 000-15 000 E/Tag, (150-200 E/kg) für 4-6 Tage
 - Bei DIC und Hypoxie, keinen Lungen Veränderungen:
 - 10 000-20 000 E/Tag, für 6-10 Tage
 - Bei DIC und Hypoxie und Lungen Veränderungen:
 - 15 000-30 000 E/Tag (200-400 E/kg) für 8-14-23 Tage
 - Die Dosierung richtet sich nach der Thrombozytenzahl und der Thrombinzeit. Eine gleichzeitige symptomatische Therapie ist anzustreben.
- Vitamin K Antagonisten können bei einigen Formen der Verbrauchskoagulopathie von Nutzen sein.
 Dicumarol ist nur bei den chronischen Formen sinnvoll, da seine Wirkung erst verspätet einsetzt.

Risiken:

Heparin kann Hämorrhagien und besonders intraalveoläre Blutungen verursachen, deshalb hat die Dosierung immer so niedrig wie möglich zu erfolgen, und es ist Vorsicht geboten bei Fällen, bei denen Gefäße zerreißen, wie bei Operationen und Placentaablösungen zum Beispiel.

Therapie der sekundären Fibrinolyse:

- 1. Fibrinolytika:
 - a) Tierexperimente haben gezeigt, daß Fibrinolytika ausgefälltes Fibrin auslösen und neue Plättchenaggregate verhindern können, aber bereits fertig gebildete Thromben nicht mehr auflösen können. Bei der Fibrinolyse auftretende Fibrinogenabbauprodukte können ebenfalls einen positiven Effekt auf die intravasale Gerinnung haben.
 - b) So sollten Streptokinase (und Urokinase) so lange noch verabreicht werden, wie die intravasale Gerinnung noch im Laufen ist. Erfolgsnachweise stehen immer noch aus.
 - c) Risiko dieser Therapie besteht in der damit verbundenen hämorrhagischen Diathese.
- 2. Antifibrinolytika:
 - a) Antifibrinolytika können den Versuch des Organismus zur Selbstheilung behindern.
 - b) So sollte deshalb entweder keine Epsilon-Aminokapronsäure und kein Aprotinin (Trasylol) gegeben werden, oder nur dann, wenn die Fibrinolyseaktivität zum vorherrschenden Problem wird. Sie sollten allerdings nicht gegeben werden, wenn die intravasale Gerinnung noch im Gange ist.
- 3. Kallikreininhibitoren: (Kall. = RRi-Enzyme, bilden Kinine Kinine senken RR+ erregen glatte Muskeln). Sie sollten nur zur Prophylaxe angewendet werden.
- 4. Substitution von Blut, Plasma und Fibrinogen. Wenn auf eine akute und extensive Verbrauchskoagulopathie massive Blutungen folgen, sollte an eine Ersatztherapie von Vollblut, Plasma und Fibrinogen gedacht werden.

Tab. 9: Fortsetzung		
Aspirationssyndrom	Toxisches Lungenödem	Schocklungensyndrom
Infusionen Therapie: Die Infusionstherapie hat mit großer Vosie den Flüssigkeitsgehalt der Lunge we und die Sauerstoffaufnahme somit weit	sentlich steigern kann,	Infusionen 1. Prophylaxe: Blut, Plasma und Dextran können die Entwicklung einer Schocklunge kurzzeitig verhindern. Sie kann aber auch noch 72 Stunden nach dem Schockereignis auftreten. 2. Therapie: Die Volumensubstitution hat mit kolloidosmotisch wirksamen Infusio- nen zu geschehen, um den Flüssig- keitsgehalt der Lunge so niedrig wie möglich zu halten. Kristalloide Lö- sungen und Plasmaersatzmittel sind mit Vorsicht anzuwenden. Dagegen scheinen niedermolekulare Dextrane sich günstig auf die Mikrozirkulation auszuwirken. Albuminsubstitution kann den intravasalen onkotischen Druck mit normalisieren.
		Diuretika Diuretika halten den Flüssigkeitsgehalt der Lunge niedrig und können den in- travasalen Druck normalisieren. Im Stadium III wird man bei der Nierenin- suffizienz zu Dialyseverfahren greifen müssen, wobei sich unter einer Perito- nealdialyse der pulmonale Gasaus- tausch verbessern kann.

			kann den intravasalen onkotischen Druck mit normalisieren.
			Diuretika Diuretika halten den Flüssigkeitsgehalt der Lunge niedrig und können den in- travasalen Druck normalisieren. Im Stadium III wird man bei der Nierenin- suffizienz zu Dialyseverfahren greifen müssen, wobei sich unter einer Perito- nealdialyse der pulmonale Gasaus- tausch verbessern kann.
Tab. 10: Beatmungstherap	pie		
Aspirationssyndrom	Toxisches Lungenödem	Scho	ocklungensyndrom
IPPB (intermittent positive-pressure breathing) in Kombination mit PEEP (Positiver Endexpiratorischer Druck) DEEP	IPPB (intermittent positive- pressure breathing) in Kombi- nation mit HOLD (Endinspira- torisches Plateau) PEEP (Positiver Endexpiratori- scher Druck)	HOLD (Endinspiratorisches Plateau)	
			rophylaxe: 3 und PEEP
Therapie: PEEP (Indikation für das interstitielle Lungenödem bei der Aspiration)	Therapie: PEEP (Indikation für das interstitielle Lungenödem) HOLD (Indikation für die restriktive Inhomogenität beim Lungenödem)	Stad Stad Stad tisch NEE liche	herapie: ium I—II: PEEP, HOLD, LOW FLOW ium II-III: PEEP, HOLD ium III: PEEP, HOLD verursachen kri- ium Kreislaufverhältnisse. EP, HIGH FLOW sind kreislauffreund- er, bedingen aber eine bedrohliche respi- rische Insuffizienz

III-3.3 Schlafmittel Drogen

1. Wegen der Hypoxie sind oft sehr hohe Sauerstoffkonzentrationen notwendig (40-100%). Dabei verschlechtert sich die Prognose um so mehr, je höher die Sauerstoffkonzentration sein muß. Die Sauerstofftoxizität mit Bildung von hyalinen Membranen und Fibrosen muß also durch Modifikationen der Beatmungsformen eingeschränkt werden (möglichst niedrige Sauerstoffkonzentrationen)

Die Gefahr bei der Therapie mit 1PPB besteht darin, daß Pneumothoraces, Haut- und Medistinalemphyseme auftreten können.

Literatur:

ADAMS, A.E.: Über Grundlagen und Störungen des Bewußtseins. Fortschr. Neurol. Psychiat. 40: 308 (1972) BARTELS, O.: Notfalltherapie exogener Vergiftungen. Münchner Medizinische Wochenschrift 7/1972, 282 CHAZAN, J.A., and GARELLA, S.: Glutethimide Intoxication. Arch. Intern. Med. 128: 215 (1971) v. CRAMON, D., BRINKMANN, R., SCHULZ, H.: Entwicklung eines Meßinstrumentes zur Bestimmung der Aufmerksamkeit bei Patienten mit cerebralen Läsionen und Funktionsstörungen. J. Neurol. 208: 241 (1975) Springer-Verlag GULBRANDSEN, G.B., KRISTIANSEN, K., URSIN, H.: Response Habituation in Unconscious Patients. Neuropsychologia 10: 313 (1972)

MOESCHLIN, S.: Klinik und Therapie der Vergiftungen. Thieme, 4. Aufl.: 465 (1965)

REED, C.E., DRIGGS, M.F., FOOTE, C.C.: Acute Barbiturate Intoxication: A Study of 300 Cases Based on a Physiologic System of Classification of the Severity of the Intoxication. Ann. Intern. Med. 37: 290 (1952)

STADLER, R.: Stadieneinteilung bei narkotischen Vergiftungen. Diss. Universität München (1980)