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AbstractAbstractAbstractAbstract    

Bacterial infections are associated with many autoimmune diseases involving chronic inflammation and demyelination. The possible mechanisms of 

bacterial involvement as aetiological agents or in the exacerbation of these diseases have been investigated intensively. This review focuses the role of 

bacterial infections in the pathogenesis of autoimmune, inflammatory and demyelinating diseases. Possible modes of pathogenic action of bacteria are 

discussed, viz. the role of cytokines, Toll-like receptor signalling, the interaction of heat shock proteins with the immune system, and the role of nitric 

oxide. An auto-regulatory loop might exist in the interaction of bacteria with the host and in pathogenic signal processing. These studies reveal potential 

therapeutic targets. 

 

 

AbbreviationsAbbreviationsAbbreviationsAbbreviations:::: AQP4 Aquaporin-4; AS ankylosing spondylitis; CSF cerebrospinal fluid; EAE autoimmune encephalomyelitis; GB Guillain-Barre 

syndrome; HLA human leukocyte antigens; HSP heat shock protein; IL interleukin; LPS lipopolysaccharides; MAM Mycoplasma arthritidis antigen; MHC 

[proteins encoded by] major histocompatibility gene complex; MS multiple sclerosis; NK natural killer cells; NMO neuromyelitis optica; NO nitric oxide; 

NOS nitirc oxide synthase; PCR polymerase chain reaction; RA rheumatoid arthritis; SLE systemic lupus erythematosus; TLR Toll-like receptors; TNF 

tumour necrosis factor 

 

 

IntroductionIntroductionIntroductionIntroduction    

Bacterial and viral infections are commonplace in a variety of 

autoimmune and chronic illnesses such as the chronic fatigue 

syndrome (myalgic encephalomyelitis), fibromyalgia syndrome, 

Gulf War illnesses and rheumatoid conditions1-3. Much 

attention is focused at present on the role of bacteria and the 

possible mechanisms of their involvement in the pathogenesis of 

several diseases. The route of infection and penetration and the 

immune responses of the host can not only make any bacterial 

infection pathogenic but probably can also determine the 

aggressiveness of the disease and the chance for full recovery. 

Therefore the two basic elements addressed here are the 

association between bacterial infection and autoimmune disease 

and the involvement of the immune system in the disease 

process.  

Bacterial infections in rheumatoid conditionsBacterial infections in rheumatoid conditionsBacterial infections in rheumatoid conditionsBacterial infections in rheumatoid conditions    

A wide variety of bacterial infections have been associated with 

rheumatoid conditions. Rheumatic diseases might have a 

manifold aetiology with varying genetic susceptibility, but 

bacteria-related autoimmunity might be an important factor4.  

Mycoplasma infection, e.g. by M. pneumoniae, M. salivarum, 

and M. fermentans, has been strongly associated with RA 

(rheumatoid arthritis)5-8. There is often systemic infection of 

more than one species8.  Mycoplasma antigens induce both cell-

mediated and humoral immune responses. Enhanced levels of 

antibodies against MAM (Mycoplasma arthritidis antigen) have 

been found in sera from RA patients in comparison with 

antibodies against Staphylococcal enterotoxins A and B. Also 

antibody titers were higher in RA serum than in systemic lupus 

erythematosus, ankylosing spondylitis, psoriatic arthritis, 

Reiter's syndrome, or healthy controls.   

The mycoplasma antigen MAM can activate T cells. MAM 

contains two domains, one of which can inhibit lymphocyte 

proliferation; the second domain, which contains concanavalin 

A motif-β, is required for T cell activation9. It can also up 

regulate natural killer cell activity10. Furthermore, synovial 

tissues of RA patients contain T-cells, which bear the same T-

cell receptors as used by MAM. The mitogen seems to be 

capable of initiating and exacerbating arthritic changes11, 12. 

MAM is a zinc-dependent antigen that binds to MHC class II 

molecules. Zinc induces MHC protein dimerisation required 

for MAM binding, MHC-induced cell-cell adhesion, and 

efficient T cell activation13, 14. As discussed in later sections, 

MAM can alter cytokine expression profiles and activate and 

modulate nitric oxide synthase (NOS) signalling pathways. 

Bacterial DNA isolated from rheumatoid arthritis (RA) and 

juvenile arthritis has included Haemophilus influenzae, 

Bordatella and Yersinia as possible infecting organisms15. Lyme 

arthritis, which resembles rheumatoid synovial infiltration by 

Borrelia burgdorferi, has often been suggested to be an 

autoimmune condition. The B. burgdorferi surface protein A 

(OspA161-175) is recognised by T-cells and HLA (human 

leukocyte antigen)-DR molecules that bind this T-cell epitope 

and to these events is attributed the development of 

autoimmunity following B. burgdorferi infection. However, 

these decline with antibiotic therapy16. Therefore, in spite of the 

perceived association, Drouin et al.17 diligently searched for 
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peptides with sequence homology with OspA (165-173) and 

have concluded from their study that molecular mimicry might 

not be significant to pathogenesis. The epitope OspA (163-175) 

is the predominant epitope associated with Lyme disease. Serum 

reactivity against OspA is also found in RA patients18. Our 

knowledge concerning the interaction of B. burgdorferi with 

host tissues and cells is rather scant. Ghosh et al.19 have 

suggested cytokeratin 10 as a potential autoantigen. Gavanescu 

et al.20 reported that mycoplasma infections can result in the 

production of autoantibodies against centrosomes. It is not 

known if this cellular organelle is involved with autoimmunity 

in RA. 

B. burgdorferi seems to be able to induce inflammatory 

responses including secretion of cytokines and cellular responses 

of the T-helper cell-1 (Th-1) type21. Beermann et al.22 generated 

lipoprotein vesicles (LV) from this bacterium and incorporated 

them into peripheral blood mononuclear cells. The resultant 

LV-T cells were predominantly the immune effector CD8+. 

Furthermore, these cells destroyed autologous T-cells carrying 

LV. These data do indeed support the existence of an 

autoimmune condition. Overall, a conservative conclusion 

would be that the molecular mimicry and autoimmunity thesis 

is yet to be fully tested.  

Proteus mirabilis has been implicated in the pathogenesis of 

RA23-26 and in osteoarthritis (OA)27, 28. Again, the HLA DRB1 

alleles appear to be the major genetic susceptibility factors as 

postulated some years ago29.   

Bacterial infection associated with other autoimmune Bacterial infection associated with other autoimmune Bacterial infection associated with other autoimmune Bacterial infection associated with other autoimmune 

conditionsconditionsconditionsconditions        

Bacterial infections have been identified in association with 

other autoimmune conditions besides RA. Members of the 

Enterobacteriaceae family are associated with autoimmune 

conditions such as Kawasaki syndrome and Graves’ disease. 

Demyelinating diseases have been a focus of active investigation 

in the past few years. Kollef et al.30 suggested that central and 

peripheral nerve demyelination might occur following M. 

pneumoniae infection. Since then patients with the 

autoimmune condition SLE (systemic lupus erythematosus) 

have been investigated for mycoplasma infections. Early studies 

revealed differences between SLE patients and control subjects 

in respect of genitourinary mycoplasma infections31. However, 

the deployment of more sensitive methods of detection has not 

supported these early claims. Runge et al.32, for instance, found 

no difference in the incidence of Ureaplasma urealyticum in 

SLE patients, and they discount the notion that this 

mycoplasma species has any role to play in the pathogenesis of 

SLE. Nonetheless, there should be no serious doubts that 

mycoplasma infection can lead to demyelination.  

The demyelinating neuropathy known as Guillain-Barre (GB) 

syndrome often has pathogenic association with bacterial 

infections. Campylobacter jejuni, Haemophilus influenzae and 

M pneumoniae have been implicated as possible causative 

agents of GB. C. jejuni is the major infecting organism here 

together with M. pneumoniae infection in some cases33, 34. GB 

is associated with the presence of antibodies against 

galactocerebroside, which is a major component of myelin35, 36.  

Some bacterial LPS (lipopolysaccharides) apparently bear 

molecular similarity to the human gangliosides GM1, GM1b, 

GD1a, and GalNAc-GD1a of the motor axolemma and are said 

to be the target epitopes for antibodies occurring in the GB 

subtype acute motor axonal neuropathy. The antiganglioside 

antibodies cause axonal neuropathy37. The host immune 

response to LPS moieties of the HB93-13 strains of C. jejuni 

cross-reacts with human nerve gangliosides and induce GBS38. . 

Multiple sclerosis (MS) is a chronic inflammatory and 

demyelinating disease of the central nervous system. The 

pathogenesis of MS is possibly a consequence of autoimmune 

condition or infection by viral or bacterial agents. Both 

infections lead to the development of demyelinating plaques. 

Bacterial infections can evoke immune responses and induce 

demyelination. Infections of the brain parenchyma are 

sequestered from the immune system. Matyszak39 has 

postulated a loss of the integrity of the blood-brain barrier at 

the foci of infection by a delayed-type hypersensitivity response 

leading to demyelination. Nitric oxide (NO), which enhances 

the permeability of the blood brain barrier, is found in greater 

quantities in the CSF (cerebrospinal fluid) of MS patients than 

of control subjects4. Also NO metabolite levels reportedly 

correlate with disease activity41. Other explanations have also 

been advanced. Gay42 has drawn attention to the putative link 

of bacterial nasopharyngeal infections with optic neuritis, 

optochiasmatic arachnoiditis and MS. The possibility is aired 

that the blood barrier may be by-passed. Gay42 points out the 

physical connection between CSF and the lymphatic drainage 

channels of the nasopharyngeal mucosa. So in the event, the 

CNS could be exposed to bacterial toxins and generate an 

immunological response. Many autoimmune diseases involve 

HLAs. The latter play a key role in antigen presentation to 

CD4+ Th cells. Specific regions of HLA e.g. HLA-C have 

robust association with MS and Graves' disease43. 

More recently serology and PCR (polymerase chain reaction) 

have provided ample evidence of Chlamydia pneumoniae, 

Borrelia burgdorferi, Mycoplasma species, human herpesvirus-1 

and -6, among others in MS, amyotrophic lateral sclerosis 

Alzheimer's and Parkinson's disease3. Parratt et al.44 looked at 

Chlamydia pneumoniae-specific immune complexes and have 

reported that C. pneumoniae infection is more frequent in MS 

patients and detected early in the course of the disease, 

presumably indicating an aetiological link. A tentative 

relationship between MS and streptococcal infection has been 

suggested45. But Budak et al.46 have found no evidence of C. 

pneumoniae DNA in CSF samples. Similarly no Mycoplasma-

specific nucleic acid sequences were detected47 (Casserly et al. 

2007). Lindsey and Patel48 found no trace of bacterial 16S 
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DNA in the CSF of MS patients with progressive diseases or 

patients in remission. They tested for Campylobacter, 

Mycoplasma, Chlamydia, Bartonella, Mycobacteria and 

Streptococcus.  

The aetiology and pathogenesis of MS and neuromyelitis optica 

(NMO) have been studied intensively from another angle in 

recent years. MS and NMO are related conditions; NMO could 

be a variant of greater severity than MS. Specific autoantibody 

responses have been identified in NMO patients. These are 

AQP4 (Aquaporin-4) antibodies generated against the water 

channel protein AQP449. 50 and they selectively target astrocytic 

end feet at the glia limitans (the external glial limiting 

membrane). 

AQP4 antibodies are regarded as autoantibodies and so 

associated with the pathogenesis of NMO. The occurrence of 

lesions in the brain and spinal cord of NMO patients are 

consistent with the degree of AQP-4 expression51. The damage 

of astrocytes encountered in NMO is attributed to these 

antibodies. Serum IgG from patients with NMO binds to the 

extracellular domain of aquaporin-4; it is predominantly IgG1. 

Antibody binding to membranes expressing aquaporin-4 

probably initiates demyelination52. HSP (heat shock protein) 70 

has also been implicated in the autoimmune response leading to 

demyelination53. 

Possible modes of pathogenic action of bacteriaPossible modes of pathogenic action of bacteriaPossible modes of pathogenic action of bacteriaPossible modes of pathogenic action of bacteria    

Molecular mimicry in pathogenesis 

Most autoimmune diseases are associated with HLA types. RA 

and AS (ankylosing spondylitis) are classical examples of the 

association of HLA with rheumatoid conditions. More than 

90% of RA patients possess HLA-DR1 or other sub-type and 

>96% of AS patients reportedly possess HLA-B2754. HLA-B27 

antigen is also involved in reactive arthritis55. 

Spondyloarthropathies (SAP) are a group of HLA-B27-linked 

diseases, characterised by inflammatory pain in the spine and 

asymmetrical arthritis in the lower limbs. HLA-B27 transgenic 

mice spontaneously develop arthritis and they are susceptible to 

collagen-induced arthritis56. The involvement of HLA antigens 

in the pathogenesis of autoimmune diseases has been suggested 

to be due to the molecular similarities between certain bacterial 

antigens and HLA antigens. But there are no cross-reactive 

antibodies against bacteria and HLA-B27 in significant titres57. 

The autoimmune conditions of Graves’ disease and Kawasaki 

syndrome are a result of the hyperactivation of the immune 

system. Bacterial infections have been implicated in both disease 

states. Yersinia enterocolitica, a member of the 

Enterobacteriaceae family, produces lipoproteins that are well 

known for their mimicry of the extracellular domain of the 

human thyrotropin receptor protein58, 59. This lipoprotein is 

mitogenic to B-cells60 and induces the production of 

autoantibodies against the thyrotropin receptor. This could be 

the cause of hyperthyroidism associated with Graves’ disease. 

Chlamydial infection occurs commonly in chronic and acute 

diseases of the upper and lower respiratory tract and. also with 

atherosclerosis and asthma. Rheumatic autoimmune conditions 

also often show antibodies against the ribosomal protein L7. 

The L7 protein has been reported to contain epitopes bearing 

homology with a specific aminoacid sequence of the C. 

trachomatis RNA polymerase61. This has led to the suggestion 

that certain rheumatoid conditions could be due to the 

molecular similarity between L7 and the homologous sequence 

of the polymerase and generation of autoantibodies. 

The autoimmune condition of SLE causes glomerulonephritis, 

arthritic changes and neurological alterations. SLE is another 

example of pathogenesis attributable to molecular mimicry 

between antigens of infecting agents and autologous proteins. 

As stated earlier, Campylobacter jejuni is the major infecting 

agent in patients with this disease. Hughes et al.62 demonstrated 

the presence of antibodies against the ganglioside GM1 in SLE 

patients. Campylobacter infection has been linked with the 

perceived molecular mimicry of bacterial LPS with the human 

gangliosides of the motor axolemma and these are the target 

epitopes for antibodies that are believed cause axonal 

neuropathy37. 

The role of cytokines in the pathogenesis of autoimmune 

conditions  

Another line of evidence that links bacterial infections with RA 

and other inflammatory autoimmune conditions is the 

demonstration that bacterial antigens, such as MAM, induce 

the synthesis of pro-inflammatory cytokines, interleukin (IL)-1, 

IL-6, and IL-863, 64. Furthermore, the modulation of the 

synthesis of cytokines by MAM corresponds with the induction 

of arthritic changes in mice65. The induction of IL-13 

expression appears to be up regulated in human fibroblast cell 

lines when the cell cultures are contaminated by mycoplasmas66. 

IL-6 and IL-8 are induced in human gingival fibroblasts by a 

host of mycoplasma species, e.g. M. hominis, M. arthritidis, M. 

arginini, M. fermentans, M. penetrans, M. pirum and M. 

pneumoniae64. Glycolipid antigens of M. fermentans have been 

identified as important mediators of pathogenicity. The 

induction of TNF (tumour necrosis factor) together with 

cytokines and prostaglandins was reported some years ago67, 68. 

TNF is produced in response to M. fermentans antigens69. 

TNF-β induced by M. fermentans appears to enhance cytokines 

that can modulate the immune system. Exposure of human 

lung fibroblasts to M. fermentans induces IL-6, IL-10 and IL-

12, IL-1β, IL-8 (now designated as CXCL8), the monocyte 

chemoattractant protein-1 (MCP-1) also known as CCL2 (CC 

chemokine ligand 2), and the chemokine (C-X-C motif) ligand 

1 (CXCL1) production69, 70. Kawahito et al.71 used monoclonal 

antibody against the M. fermentans glycolipid antigen GGPL-

III and detected it in synovial tissues from RA patients. The 
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antigen was not detectable in OA or normal synovial tissues. 

Furthermore, GGPL-III induced TNF-α and IL-6 production 

by peripheral blood mononuclear cells, and also induced 

proliferation of synovial fibroblasts. However, anti-

phospholipid antibodies are generated in response to a number 

of bacterial infections72. So their presence alone might not be 

clearly linked with pathogenesis. 

 

Toll-like receptor signalling in immune responses to infection 

The generation of immune responses to lipopolysaccharides 

(LPS) is mediated by a class of receptors called Toll-like 

receptors (TLRs). These are transmembrane receptors that 

activate immune cell responses. TLR can recognise molecular 

patterns associated with pathogenic infectious agents; among 

them of note are LPS, viral RNA, and unmethylated CpG-

oligonucleotides. 

The TLR signalling mechanism has been the focus of much 

attention. Exposure of cells to LPS or other toxins induces the 

expression of different forms of TLR and different pro-

inflammatory interleukins and interferons73. Inflammatory 

responses to M. arthritidis lipoproteins require TLRs74. MAM 

of M. arthritidis has been shown to interact with TLRs75. MAM 

generates a differential immune reactivity mediated by different 

TLR types. The co-stimulatory molecules associated with the 

immune stimulation determine the outcome in terms of IL 

isoform produced and this depends upon which co-stimulatory 

factor interacts with MAM. Thus inhibition of co-stimulatory 

factor B7-1 leads to a shift from IL-2 to IL-176. TLR signalling 

also involves caspases required for processing the precursors of 

IL-1β and IL-18. The TLRs use the adapter protein MyD88 

and the so-called adapter-like MyD88 to activate signaling 

pathways, but only the latter interacts with caspase77. So here 

we have another potential means of regulating the expression 

pattern of pro-inflammatory cytokines. In other words, IL 

production pattern is determined by the co-operation TLRs. 

TLRs can synergistically or competitively modulate IL 

expression in immune response to infectious agents78. Equally, 

one can attribute specific TLRs of T-cells with the ability to 

directly stimulate Th1 and Th2 effector function and modulate 

the synthesis of cytokines and interferons, and influence cell 

proliferation and survival79. TLR function is closely related to 

Fcγ receptor (FcγR) expression. The cells of the immune system 

express receptors for the Fc region of Ig isotypes. FcγR for IgG 

links IgG mediated responses of the immune system80. TLR4 

up regulates the expression of FcγR. IL10 is said to be involved 

in and mediate this up regulation81. Probably, as Loof et al.82 

have implied, TLRs might be functioning as a cohort of 

signalling channels interacting with one another rather than 

acting individually to generate an immune outcome. TLR 

signalling might be autoregulated; a concept that is worthy of 

investigation. 

LPS seems to induce the production of interleukins via a TLR-

mediated pathway.  Exposure of the macrophage RAW264.7 

cell line to LPS leads to Janus kinase (JAK)2 tyrosine 

phosphorylation with TLR4 mediation, then down stream to 

the phosphorylation of JNK {c-jun N terminal kinase) resulting 

in IL production83.  

Finally, TLR signalling is involved in the activation of innate 

immunity in defence from infections not only bacterial, but also 

viral and parasitic. NK cells, macrophages, dendritic cells are all 

capable of enlisting TLRs signalling in their function. The 

recognition of bacterial infection by NK cells seems to be 

mediated by TLR84, 85.  Other infections e. g. by the parasitic 

protozoan Leishmania major, result in the induction of IL-12 in 

bone marrow-derived dendritic cells, IFN-γ expression and 

activation of NK cells. These events are mediated by TLR986. 

The interaction of heat shock proteins with the immune system  

Heat shock proteins (HSP) are a highly conserved family of 

stress-related proteins with diverse function such as protein 

folding and chaperoning, and novel and differential modes of 

function have now been ascribed to their functional repertoire. 

HSPs might chaperone antigenic peptides.  

Antibodies against a number of HSPs have been detected in 

autoimmune diseases. Marked increases in antibodies against 

HSP70 and HSP90 occur in patients with RA87, Klebsiella 

pneumoniae HSP60 in ankylosing spondylitis patients88, 

HSP27 and HSP90 antibodies in patients with arthritis 

accompanying cystic fibrosis89 and so on. T lymphocytes react 

to heat shock proteins and this probably plays an important 

regulatory role in the progression of autoimmune diseases. 

HLA-DR-T cell epitopes have been identified in HSP60 and 

HSP7090-92. In experimental systems HSP60 induces the 

production of IL-8 and TNF (tumor necrosis factor)-α and this 

is enhanced by HSP auto-antibodies. Sera from RA patients 

with higher anti-HSP60 auto-antibody titers also markedly 

increased the IL-8 production induced by HSP60 in a human 

monocytic cell line93.  As yet, it is unclear what role HSP auto-

antibodies might play in pathogenesis.  

HSP are known to be able to influence both innate and 

adaptive immune response and induce the expression of 

interleukins under a variety of experimental conditions. Some 

HSPs induce and other can inhibit the production of 

interleukins. Bacterial HSPs bear sequence homology to human 

HSPs, and immunisation with bacterial HSPs has often 

inhibited disease progression94. Several HSP receptors have been 

identified to-date on antigen presenting cells. Among them are 

the Toll-like receptors TLR2 and TLR4. HSPs are recognised 

by appropriate receptors to initiate their participation in the 

signalling cascade95, 96. Singh et al.97 showed that heat shock 

activated transcription factor HSF-1 (heat shock factor-1) binds 

to heat shock responsive elements in the promoter of genes 

coding for certain interleukins.  
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The TLR signalling pathway has been robustly implicated in 

HSP function. HSPs recognise and bind to pathogen-associated 

molecules and activate TLR mediated signalling. It appears 

possible that different HSPs might differentially activate TLRs 

thus determining the functional pathway. Thus HSP60 is said 

to bind to TLR1 but not to TLR298; this could have differing 

consequences in terms of induction of cytokines. HSP70 bound 

to the cell membrane is said to specifically activate NK cells, 

whilst intracellular HSP70 exerts immunomodulatory effects by 

binding specifically to TLR2 and TLR4. In vitro studies have 

suggested that HSP70 is actively released in response to heat 

shock and induces the production of IL-10 in fibroblast-like 

synoviocytes by TLR4 signalling99. HSP72 induces IL-8 

expression by activating TLR4 and NF-kappa B100.  

The role of nitric oxide in the pathogenesis of autoimmune, 

inflammatory and demyelinating diseases  

Nitric oxide (NO) is synthesised by NO synthase (NOS) which 

occurs as neuronal, endothelial and inducible isoforms. NO 

subserves many functions. Most prominently, it is a vasoactive 

agent regarded as contributing significantly to the pathogenesis 

of inflammatory immune and neurodegenerative diseases. RA, 

SLE, MS, and experimental autoimmune encephalomyelitis 

(EAE), an experimental model of MS, all show associated 

synthesis of NO, superoxide and their toxic products. Upon 

infection bacterial components bind to macrophages using 

TLRs and this leads to the production of TNF-α, which in turn 

induces to the synthesis of NO. NO is also expressed by cells 

when exposed to IFN-γ. NOS is required for bacterial clearance 

during infection101. The general and overall effects would be 

bactericidal in nature. 

Arthritic changes occurring in an animal model called adjuvant-

induced arthritis, which exhibits features similar to those of RA, 

accompany the induction of NOS. Furthermore, NOS 

inhibitors suppress the arthritic changes102. Mouse peritoneal 

macrophages and a macrophage cell line have been reported to 

synthesise NO in response to MAM. This is enhanced by LPS 

possibly via TLR2 but not TLR4 signalling103, 104. M. hominis 

lipophilic component also interacts with TLR2 not TLR4105. 

M. synoviae lipoprotein lipid moiety induces NO secretion by 

chicken macrophages106.  

 Nitric oxide (NO) enhances the permeability of the blood 

brain barrier. The invasion of the CNS by inflammatory cells 

and the development of EAE are prevented if the toxic product 

peroxynitrite of NO and superoxide are scavenged107. Both 

constitutive isoforms of NOS, neuronal and endothelial, and 

inducible NOS are active in the demyelination process108. NOS 

has also been implicated in the pathogenesis of Parkinson’s 

disease109. 

Demyelination can be induced by mycoplasmas. NO, 

inflammatory cytokines, and prostaglandins are induced when 

glial cells are exposed to M. fermentans antigens68. Heat shock 

inhibits both NO and iNOS (inducible NOS)110, 111. Bacterial 

LPS-induced expression of NOS can be inhibited by exposure 

of cells to hyperthermia at 43°C. Transfection of HSP70 

reduces iNOS expression111, 112. From the foregoing discussions 

one can visualize a complete regulatory picture of the 

involvement of HLAs, HSPs, cytokines and nitric oxide in the 

pathogenesis of inflammatory immune diseases. 

Although NO is harmful to bacteria, it can induce apoptosis in 

some cell systems113 and cause necrosis (see Naito et al.114). The 

toxicity of NO can result in immune suppression and in turn 

lead to enhanced infection115. Bacteria also seem to have evolved 

protective mechanisms against these deleterious effects. So host 

resistance to bacterial infections and the ability of bacteria to 

initiate inflammatory and demyelinating conditions leading to 

pathogenesis are finely tuned. The understanding of the control 

mechanisms has not only expanded our knowledge of the 

possible modes of bacterial involvement in pathogenesis, but it 

has also led to the identification of potential targets for therapy. 

The activation of signalling pathways mediated by TLRs has 

afforded an avenue of therapeutic approaches to autoimmune 

conditions. TLR signalling together with its cognate receptors 

and adapter molecules can conceivably be employed as specific 

targets for therapeutic intervention. The TLR agonists have 

been found to enhance immune responses, especially against 

tumours116. Some agonists have been approved for the 

treatment of certain human disease conditions117, 118. There is 

also much scope for the detection of bacterial infections via 

TLRs. As discussed earlier the TLR signalling pathway might be 

implicated in potential crosstalk with other interacting 

signalling systems. In other words, a composite regulatory 

operation of many pathways involving TLRs can be delineated 

in the pathogenesis of autoimmune diseases.  

It would not be out of place to inquire here into the potential 

clinical benefits of studying the role of bacterial infections and 

the mode of their participation in the disease process. The 

prevention of disease progression is one of the benefits, in 

which not only the identification of the infecting agent but also 

the mode by which the infectious agents might trigger initiation 

and progression would make a valuable contribution. 

Specifically targeted intervention modalities using antibacterial 

therapy can evolve and develop from such basic research. Also 

these would find much application in the development of 

healthcare facilities such as antimicrobial ‘stewardship’ 

programmes and infection control programmes to monitor 

effects of treatment and treatment costs119. Unavoidably the 

cost effectiveness of treatment regimes comes into reckoning. 

This makes it imperative that factors which determine 

antibiotic-resistance of bacteria are identified and adequately 

addressed. 
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